Amazon Web Services ブログ

Category: Amazon Redshift

Amazon Redshift DC2 から RA3 および Amazon Redshift Serverless へのアップグレードのベストプラクティス

Amazon Redshift はコンピュート集約型ワークロードに最適化された DC2(Dense Compute)ノードタイプを提供していました。しかし、これらはコンピュートとストレージを独立してスケーリングする柔軟性に欠け、現在利用可能な多くの最新機能をサポートしていませんでした。分析需要の増大に伴い、多くのお客様が DC2 から RA3 または Amazon Redshift Serverless へアップグレードしています。これらは独立したコンピュートとストレージのスケーリングを提供し、データ共有、ゼロ ETL 統合、Amazon Redshift ML による組み込みの人工知能および機械学習(AI/ML)サポートなどの高度な機能を備えています。

この記事では、ターゲットアーキテクチャと移行戦略を計画するための実践的なガイドを提供し、アップグレードオプション、主要な考慮事項、および成功したシームレスな移行を促進するためのベストプラクティスをカバーしています。

物流業界のチャレンジを支えるデータ活用 – Nippon Express の事例から

物流業界において、特にデータを活用した改善は、物流DXとして総合物流施策大綱でも長年にわたり強く推奨されてきました。このような状況を受けて多くの物流企業がデータ活用を経営戦略の重要項目として位置付けているものの、実態としては有効な施策が打ち出せずにいるケースが多く見受けられます。
本記事ではそういった課題に悩まれる物流事業担当者向けに、データ活用の成功モデルとして日本通運株式会社(以下Nippon Express)のデータ分析基盤「NX Data Station」を解説します。同社は既存リソースを最大限に活用しながら、コスト効果の高いデータ分析基盤を構築し、データを基に業務効率化と意思決定の質向上を実現しています。
記事は2025年7月15日に開催された Amazon SageMaker Roadshow でのNX情報システム および キヤノンITソリューションズ のセッション内容をもとに記載しています。

ファーストパーティデータによる D2C (Direct-to-Consumer) マーケティングの実現:生成 AI によるパーソナライズされた体験の提供

消費財 (Consumer Packaged Goods) 企業が長期的な成功を収めるためには、考慮すべき点がたくさんあります。とりわけ、ブランドコントロールを維持し、利益率を改善し、顧客との良い関係を築く新しい方法を見つける必要があります。幸いなことに、生成 AI の出現により、消費財企業がこれらすべての課題に対処できるようになりました。。ただし、これは万能のアプローチではありません。AI を組織に導入するだけでは、最大のメリットは得られません。ビジネス目標に沿った戦略的アプリケーションを採用する必要があります。