Artificial Intelligence
Implementing on-demand deployment with customized Amazon Nova models on Amazon Bedrock
In this post, we walk through the custom model on-demand deployment workflow for Amazon Bedrock and provide step-by-step implementation guides using both the AWS Management Console and APIs or AWS SDKs. We also discuss best practices and considerations for deploying customized Amazon Nova models on Amazon Bedrock.
Building enterprise-scale RAG applications with Amazon S3 Vectors and DeepSeek R1 on Amazon SageMaker AI
Organizations are adopting large language models (LLMs), such as DeepSeek R1, to transform business processes, enhance customer experiences, and drive innovation at unprecedented speed. However, standalone LLMs have key limitations such as hallucinations, outdated knowledge, and no access to proprietary data. Retrieval Augmented Generation (RAG) addresses these gaps by combining semantic search with generative AI, […]
Accenture scales video analysis with Amazon Nova and Amazon Bedrock Agents
This post was written with Ilan Geller, Kamal Mannar, Debasmita Ghosh, and Nakul Aggarwal of Accenture. Video highlights offer a powerful way to boost audience engagement and extend content value for content publishers. These short, high-impact clips capture key moments that drive viewer retention, amplify reach across social media, reinforce brand identity, and open new […]
Deploy conversational agents with Vonage and Amazon Nova Sonic
In this post, we explore how developers can integrate Amazon Nova Sonic with the Vonage communications service to build responsive, natural-sounding voice experiences in real time. By combining the Vonage Voice API with the low-latency and expressive speech capabilities of Amazon Nova Sonic, businesses can deploy AI voice agents that deliver more human-like interactions than traditional voice interfaces. These agents can be used as customer support, virtual assistants, and more.
Enabling customers to deliver production-ready AI agents at scale
Today, I’m excited to share how we’re bringing this vision to life with new capabilities that address the fundamental aspects of building and deploying agents at scale. These innovations will help you move beyond experiments to production-ready agent systems that can be trusted with your most critical business processes.
Amazon Bedrock Knowledge Bases now supports Amazon OpenSearch Service Managed Cluster as vector store
Amazon Bedrock Knowledge Bases has extended its vector store options by enabling support for Amazon OpenSearch Service managed clusters, further strengthening its capabilities as a fully managed Retrieval Augmented Generation (RAG) solution. This enhancement builds on the core functionality of Amazon Bedrock Knowledge Bases , which is designed to seamlessly connect foundation models (FMs) with internal data sources. This post provides a comprehensive, step-by-step guide on integrating an Amazon Bedrock knowledge base with an OpenSearch Service managed cluster as its vector store.
Monitor agents built on Amazon Bedrock with Datadog LLM Observability
We’re excited to announce a new integration between Datadog LLM Observability and Amazon Bedrock Agents that helps monitor agentic applications built on Amazon Bedrock. In this post, we’ll explore how Datadog’s LLM Observability provides the visibility and control needed to successfully monitor, operate, and debug production-grade agentic applications built on Amazon Bedrock Agents.
How PayU built a secure enterprise AI assistant using Amazon Bedrock
PayU offers a full-stack digital financial services system that serves the financial needs of merchants, banks, and consumers through technology. In this post, we explain how we equipped the PayU team with an enterprise AI solution and democratized AI access using Amazon Bedrock, without compromising on data residency requirements.
Supercharge generative AI workflows with NVIDIA DGX Cloud on AWS and Amazon Bedrock Custom Model Import
This post is co-written with Andrew Liu, Chelsea Isaac, Zoey Zhang, and Charlie Huang from NVIDIA. DGX Cloud on Amazon Web Services (AWS) represents a significant leap forward in democratizing access to high-performance AI infrastructure. By combining NVIDIA GPU expertise with AWS scalable cloud services, organizations can accelerate their time-to-train, reduce operational complexity, and unlock […]
Accelerate generative AI inference with NVIDIA Dynamo and Amazon EKS
This post introduces NVIDIA Dynamo and explains how to set it up on Amazon EKS for automated scaling and streamlined Kubernetes operations. We provide a hands-on walkthrough, which uses the NVIDIA Dynamo blueprint on the AI on EKS GitHub repo by AWS Labs to provision the infrastructure, configure monitoring, and install the NVIDIA Dynamo operator.