AWS Machine Learning Blog

Category: Thought Leadership

Generative AI platform maturity stages

Architect a mature generative AI foundation on AWS

In this post, we give an overview of a well-established generative AI foundation, dive into its components, and present an end-to-end perspective. We look at different operating models and explore how such a foundation can operate within those boundaries. Lastly, we present a maturity model that helps enterprises assess their evolution path.

Insights in implementing production-ready solutions with generative AI

As generative AI revolutionizes industries, organizations are eager to harness its potential. However, the journey from production-ready solutions to full-scale implementation can present distinct operational and technical considerations. This post explores key insights and lessons learned from AWS customers in Europe, Middle East, and Africa (EMEA) who have successfully navigated this transition, providing a roadmap for others looking to follow suit.

InterVision accelerates AI development using AWS LLM League and Amazon SageMaker AI

This post demonstrates how AWS LLM League’s gamified enablement accelerates partners’ practical AI development capabilities, while showcasing how fine-tuning smaller language models can deliver cost-effective, specialized solutions for specific industry needs.

model migration process

Improve Amazon Nova migration performance with data-aware prompt optimization

In this post, we present an LLM migration paradigm and architecture, including a continuous process of model evaluation, prompt generation using Amazon Bedrock, and data-aware optimization. The solution evaluates the model performance before migration and iteratively optimizes the Amazon Nova model prompts using user-provided dataset and objective metrics.

Evaluation Workflow

Evaluate Amazon Bedrock Agents with Ragas and LLM-as-a-judge

In this post, we introduced the Open Source Bedrock Agent Evaluation framework, a Langfuse-integrated solution that streamlines the agent development process. We demonstrated how this evaluation framework can be integrated with pharmaceutical research agents. We used it to evaluate agent performance against biomarker questions and sent traces to Langfuse to view evaluation metrics across question types.

Picture-7-Feature-Image-Virtual AI Assistant using Amazon Q Business

Build a generative AI enabled virtual IT troubleshooting assistant using Amazon Q Business

Discover how to build a GenAI powered virtual IT troubleshooting assistant using Amazon Q Business. This innovative solution integrates with popular ITSM tools like ServiceNow, Atlassian Jira, and Confluence to streamline information retrieval and enhance collaboration across your organization. By harnessing the power of generative AI, this assistant can significantly boost operational efficiency and provide 24/7 support tailored to individual needs. Learn how to set up, configure, and leverage this solution to transform your enterprise information management.

Unleash AI innovation with Amazon SageMaker HyperPod

In this post, we show how SageMaker HyperPod, and its new features introduced at AWS re:Invent 2024, is designed to meet the demands of modern AI workloads, offering a persistent and optimized cluster tailored for distributed training and accelerated inference at cloud scale and attractive price-performance.

A diagram showing a generation chain followed by a judge chain which intelligently routes requests back if required for re-ranking

Ground truth generation and review best practices for evaluating generative AI question-answering with FMEval

In this post, we discuss best practices for applying LLMs to generate ground truth for evaluating question-answering assistants with FMEval on an enterprise scale. FMEval is a comprehensive evaluation suite from Amazon SageMaker Clarify, and provides standardized implementations of metrics to assess quality and responsibility. To learn more about FMEval, see Evaluate large language models for quality and responsibility of LLMs.

cont_ft_workflow

LLM continuous self-instruct fine-tuning framework powered by a compound AI system on Amazon SageMaker

In this post, we present the continuous self-instruct fine-tuning framework as a compound AI system implemented by the DSPy framework. The framework first generates a synthetic dataset from the domain knowledge base and documents for self-instruction, then drives model fine-tuning through SFT, and introduces the human-in-the-loop workflow to collect human and AI feedback to the model response, which is used to further improve the model performance by aligning human preference through reinforcement learning (RLHF/RLAIF).