Artificial Intelligence
Category: Intermediate (200)
Query Amazon Aurora PostgreSQL using Amazon Bedrock Knowledge Bases structured data
In this post, we discuss how to make your Amazon Aurora PostgreSQL-Compatible Edition data available for natural language querying through Amazon Bedrock Knowledge Bases while maintaining data freshness.
Scale generative AI use cases, Part 1: Multi-tenant hub and spoke architecture using AWS Transit Gateway
n this two-part series, we discuss a hub and spoke architecture pattern for building a multi-tenant and multi-account architecture. This pattern supports abstractions for shared services across use cases and teams, helping create secure, scalable, and reliable generative AI systems. In Part 1, we present a centralized hub for generative AI service abstractions and tenant-specific spokes, using AWS Transit Gateway for cross-account interoperability.
Classify call center conversations with Amazon Bedrock batch inference
In this post, we demonstrate how to build an end-to-end solution for text classification using the Amazon Bedrock batch inference capability with the Anthropic’s Claude Haiku model. We walk through classifying travel agency call center conversations into categories, showcasing how to generate synthetic training data, process large volumes of text data, and automate the entire workflow using AWS services.
How INRIX accelerates transportation planning with Amazon Bedrock
INRIX pioneered the use of GPS data from connected vehicles for transportation intelligence. In this post, we partnered with Amazon Web Services (AWS) customer INRIX to demonstrate how Amazon Bedrock can be used to determine the best countermeasures for specific city locations using rich transportation data and how such countermeasures can be automatically visualized in street view images. This approach allows for significant planning acceleration compared to traditional approaches using conceptual drawings.
Agents as escalators: Real-time AI video monitoring with Amazon Bedrock Agents and video streams
In this post, we show how to build a fully deployable solution that processes video streams using OpenCV, Amazon Bedrock for contextual scene understanding and automated responses through Amazon Bedrock Agents. This solution extends the capabilities demonstrated in Automate chatbot for document and data retrieval using Amazon Bedrock Agents and Knowledge Bases, which discussed using Amazon Bedrock Agents for document and data retrieval. In this post, we apply Amazon Bedrock Agents to real-time video analysis and event monitoring.
Optimize RAG in production environments using Amazon SageMaker JumpStart and Amazon OpenSearch Service
In this post, we show how to use Amazon OpenSearch Service as a vector store to build an efficient RAG application.
Advancing AI agent governance with Boomi and AWS: A unified approach to observability and compliance
In this post, we share how Boomi partnered with AWS to help enterprises accelerate and scale AI adoption with confidence using Agent Control Tower.
Use Amazon SageMaker Unified Studio to build complex AI workflows using Amazon Bedrock Flows
In this post, we demonstrate how you can use SageMaker Unified Studio to create complex AI workflows using Amazon Bedrock Flows.
Revolutionizing drug data analysis using Amazon Bedrock multimodal RAG capabilities
In this post, we explore how Amazon Bedrock’s multimodal RAG capabilities revolutionize drug data analysis by efficiently processing complex medical documentation containing text, images, graphs, and tables.
Context extraction from image files in Amazon Q Business using LLMs
In this post, we look at a step-by-step implementation for using the custom document enrichment (CDE) feature within an Amazon Q Business application to process standalone image files. We walk you through an AWS Lambda function configured within CDE to process various image file types, and showcase an example scenario of how this integration enhances Amazon Q Business’s ability to provide comprehensive insights.