Artificial Intelligence
Category: Industries
Principal Financial Group accelerates build, test, and deployment of Amazon Lex V2 bots through automation
In the post Principal Financial Group increases Voice Virtual Assistant performance using Genesys, Amazon Lex, and Amazon QuickSight, we discussed the overall Principal Virtual Assistant solution using Genesys Cloud, Amazon Lex V2, multiple AWS services, and a custom reporting and analytics solution using Amazon QuickSight.
Medical reports analysis dashboard using Amazon Bedrock, LangChain, and Streamlit
In this post, we demonstrate the development of a conceptual Medical Reports Analysis Dashboard that combines Amazon Bedrock AI capabilities, LangChain’s document processing, and Streamlit’s interactive visualization features. The solution transforms complex medical data into accessible insights through a context-aware chat system powered by large language models available through Amazon Bedrock and dynamic visualizations of health parameters.
Modernize fraud prevention: GraphStorm v0.5 for real-time inference
In this post, we demonstrate how to implement real-time fraud prevention using GraphStorm v0.5’s new capabilities for deploying graph neural network (GNN) models through Amazon SageMaker. We show how to transition from model training to production-ready inference endpoints with minimal operational overhead, enabling sub-second fraud detection on transaction graphs with billions of nodes and edges.
Exploring the Real-Time Race Track with Amazon Nova
This post explores the Real-Time Race Track (RTRT), an interactive experience built using Amazon Nova in Amazon Bedrock, that lets fans design, customize, and share their own racing circuits. We highlight how generative AI capabilities come together to deliver strategic racing insights such as pit timing and tire choices, and interactive features like an AI voice assistant and a retro-style racing poster.
Learn how Amazon Health Services improved discovery in Amazon search using AWS ML and gen AI
In this post, we show you how Amazon Health Services (AHS) solved discoverability challenges on Amazon.com search using AWS services such as Amazon SageMaker, Amazon Bedrock, and Amazon EMR. By combining machine learning (ML), natural language processing, and vector search capabilities, we improved our ability to connect customers with relevant healthcare offerings.
Create personalized products and marketing campaigns using Amazon Nova in Amazon Bedrock
Built using Amazon Nova in Amazon Bedrock, The Fragrance Lab represents a comprehensive end-to-end application that illustrates the transformative power of generative AI in retail, consumer goods, advertising, and marketing. In this post, we explore the development of The Fragrance Lab. Our vision was to craft a unique blend of physical and digital experiences that would celebrate creativity, advertising, and consumer goods while capturing the spirit of the French Riviera.
Tyson Foods elevates customer search experience with an AI-powered conversational assistant
In this post, we explore how Tyson Foods collaborated with the AWS Generative AI Innovation Center to revolutionize their customer interaction through an intuitive AI assistant integrated into their website. The AI assistant was built using Amazon Bedrock,
How Infosys built a generative AI solution to process oil and gas drilling data with Amazon Bedrock
We built an advanced RAG solution using Amazon Bedrock leveraging Infosys Topaz™ AI capabilities, tailored for the oil and gas sector. This solution excels in handling multimodal data sources, seamlessly processing text, diagrams, and numerical data while maintaining context and relationships between different data elements. In this post, we provide insights on the solution and walk you through different approaches and architecture patterns explored, like different chunking, multi-vector retrieval, and hybrid search during the development.
How Indegene’s AI-powered social intelligence for life sciences turns social media conversations into insights
This post explores how Indegene’s Social Intelligence Solution uses advanced AI to help life sciences companies extract valuable insights from digital healthcare conversations. Built on AWS technology, the solution addresses the growing preference of HCPs for digital channels while overcoming the challenges of analyzing complex medical discussions on a scale.
Responsible AI for the payments industry – Part 1
This post explores the unique challenges facing the payments industry in scaling AI adoption, the regulatory considerations that shape implementation decisions, and practical approaches to applying responsible AI principles. In Part 2, we provide practical implementation strategies to operationalize responsible AI within your payment systems.