Artificial Intelligence

Category: Amazon Nova

Use generative AI in Amazon Bedrock for enhanced recommendation generation in equipment maintenance

In the manufacturing world, valuable insights from service reports often remain underutilized in document storage systems. This post explores how Amazon Web Services (AWS) customers can build a solution that automates the digitisation and extraction of crucial information from many reports using generative AI.

Deploy a full stack voice AI agent with Amazon Nova Sonic

In this post, we show how to create an AI-powered call center agent for a fictional company called AnyTelco. The agent, named Telly, can handle customer inquiries about plans and services while accessing real-time customer data using custom tools implemented with the Model Context Protocol (MCP) framework.

Evaluating generative AI models with Amazon Nova LLM-as-a-Judge on Amazon SageMaker AI

Evaluating the performance of large language models (LLMs) goes beyond statistical metrics like perplexity or bilingual evaluation understudy (BLEU) scores. For most real-world generative AI scenarios, it’s crucial to understand whether a model is producing better outputs than a baseline or an earlier iteration. This is especially important for applications such as summarization, content generation, […]

Accenture scales video analysis with Amazon Nova and Amazon Bedrock Agents

This post was written with Ilan Geller, Kamal Mannar, Debasmita Ghosh, and Nakul Aggarwal of Accenture. Video highlights offer a powerful way to boost audience engagement and extend content value for content publishers. These short, high-impact clips capture key moments that drive viewer retention, amplify reach across social media, reinforce brand identity, and open new […]

Enabling customers to deliver production-ready AI agents at scale

Today, I’m excited to share how we’re bringing this vision to life with new capabilities that address the fundamental aspects of building and deploying agents at scale. These innovations will help you move beyond experiments to production-ready agent systems that can be trusted with your most critical business processes.

End-to-end architecture diagram of voice-enabled AI agent orchestrated by Pipecat, featuring real-time processing and AWS services

Building intelligent AI voice agents with Pipecat and Amazon Bedrock – Part 2

In Part 1 of this series, you learned how you can use the combination of Amazon Bedrock and Pipecat, an open source framework for voice and multimodal conversational AI agents to build applications with human-like conversational AI. You learned about common use cases of voice agents and the cascaded models approach, where you orchestrate several components to build your voice AI agent. In this post (Part 2), you explore how to use speech-to-speech foundation model, Amazon Nova Sonic, and the benefits of using a unified model.

Diagram illustrates the solution architecture of Amazon Nova Sonic

Build real-time conversational AI experiences using Amazon Nova Sonic and LiveKit

Amazon Nova Sonic is now integrated with LiveKit’s WebRTC framework, a widely used platform that enables developers to build real-time audio, video, and data communication applications. This integration makes it possible for developers to build conversational voice interfaces without needing to manage complex audio pipelines or signaling protocols. In this post, we explain how this integration works, how it addresses the historical challenges of voice-first applications, and some initial steps to start using this solution.

How INRIX accelerates transportation planning with Amazon Bedrock

INRIX pioneered the use of GPS data from connected vehicles for transportation intelligence. In this post, we partnered with Amazon Web Services (AWS) customer INRIX to demonstrate how Amazon Bedrock can be used to determine the best countermeasures for specific city locations using rich transportation data and how such countermeasures can be automatically visualized in street view images. This approach allows for significant planning acceleration compared to traditional approaches using conceptual drawings.

AWS claims summarization workflow diagram integrating data preprocessing, queuing, AI processing, and storage services

Driving cost-efficiency and speed in claims data processing with Amazon Nova Micro and Amazon Nova Lite

In this post, we shared how an internal technology team at Amazon evaluated Amazon Nova models, resulting in notable improvements in inference speed and cost-efficiency.

Build an agentic multimodal AI assistant with Amazon Nova and Amazon Bedrock Data Automation

In this post, we demonstrate how agentic workflow patterns such as Retrieval Augmented Generation (RAG), multi-tool orchestration, and conditional routing with LangGraph enable end-to-end solutions that artificial intelligence and machine learning (AI/ML) developers and enterprise architects can adopt and extend. We walk through an example of a financial management AI assistant that can provide quantitative research and grounded financial advice by analyzing both the earnings call (audio) and the presentation slides (images), along with relevant financial data feeds.