Artificial Intelligence
Category: Amazon Nova
Voice AI-powered drive-thru ordering with Amazon Nova Sonic and dynamic menu displays
In this post, we’ll demonstrate how to implement a Quick Service Restaurants (QSRs) drive-thru solution using Amazon Nova Sonic and AWS services. We’ll walk through building an intelligent system that combines voice AI with interactive menu displays, providing technical insights and implementation guidance to help restaurants modernize their drive-thru operations.
Optimizing document AI and structured outputs by fine-tuning Amazon Nova Models and on-demand inference
This post provides a comprehensive hands-on guide to fine-tune Amazon Nova Lite for document processing tasks, with a focus on tax form data extraction. Using our open-source GitHub repository code sample, we demonstrate the complete workflow from data preparation to model deployment.
Transforming enterprise operations: Four high-impact use cases with Amazon Nova
In this post, we share four high-impact, widely adopted use cases built with Nova in Amazon Bedrock, supported by real-world customers deployments, offerings available from AWS partners, and experiences. These examples are ideal for organizations researching their own AI adoption strategies and use cases across industries.
Customizing text content moderation with Amazon Nova
In this post, we introduce Amazon Nova customization for text content moderation through Amazon SageMaker AI, enabling organizations to fine-tune models for their specific moderation needs. The evaluation across three benchmarks shows that customized Nova models achieve an average improvement of 7.3% in F1 scores compared to the baseline Nova Lite, with individual improvements ranging from 4.2% to 9.2% across different content moderation tasks.
Automate Amazon QuickSight data stories creation with agentic AI using Amazon Nova Act
In this post, we demonstrate how Amazon Nova Act automates QuickSight data story creation, saving time so you can focus on making critical, data-driven business decisions.
How PropHero built an intelligent property investment advisor with continuous evaluation using Amazon Bedrock
In this post, we explore how we built a multi-agent conversational AI system using Amazon Bedrock that delivers knowledge-grounded property investment advice. We explore the agent architecture, model selection strategy, and comprehensive continuous evaluation system that facilitates quality conversations while facilitating rapid iteration and improvement.
Exploring the Real-Time Race Track with Amazon Nova
This post explores the Real-Time Race Track (RTRT), an interactive experience built using Amazon Nova in Amazon Bedrock, that lets fans design, customize, and share their own racing circuits. We highlight how generative AI capabilities come together to deliver strategic racing insights such as pit timing and tire choices, and interactive features like an AI voice assistant and a retro-style racing poster.
Build character consistent storyboards using Amazon Nova in Amazon Bedrock – Part 2
In this post, we take an animated short film, Picchu, produced by FuzzyPixel from Amazon Web Services (AWS), prepare training data by extracting key character frames, and fine-tune a character-consistent model for the main character Mayu and her mother, so we can quickly generate storyboard concepts for new sequels like the following images.
Build character consistent storyboards using Amazon Nova in Amazon Bedrock – Part 1
The art of storyboarding stands as the cornerstone of modern content creation, weaving its essential role through filmmaking, animation, advertising, and UX design. Though traditionally, creators have relied on hand-drawn sequential illustrations to map their narratives, today’s AI foundation models (FMs) are transforming this landscape. FMs like Amazon Nova Canvas and Amazon Nova Reel offer […]
Natural language-based database analytics with Amazon Nova
In this post, we explore how natural language database analytics can revolutionize the way organizations interact with their structured data through the power of large language model (LLM) agents. Natural language interfaces to databases have long been a goal in data management. Agents enhance database analytics by breaking down complex queries into explicit, verifiable reasoning steps and enabling self-correction through validation loops that can catch errors, analyze failures, and refine queries until they accurately match user intent and schema requirements.