Artificial Intelligence

Tag: AIML

End-to-End model training and deployment with Amazon SageMaker Unified Studio

In this post, we guide you through the stages of customizing large language models (LLMs) with SageMaker Unified Studio and SageMaker AI, covering the end-to-end process starting from data discovery to fine-tuning FMs with SageMaker AI distributed training, tracking metrics using MLflow, and then deploying models using SageMaker AI inference for real-time inference. We also discuss best practices to choose the right instance size and share some debugging best practices while working with JupyterLab notebooks in SageMaker Unified Studio.

Extend your Amazon Q Business with PagerDuty Advance data accessor

In this post, we demonstrate how organizations can enhance their incident management capabilities by integrating PagerDuty Advance, an innovative set of agentic and generative AI capabilities that automate response workflows and provide real-time insights into operational health, with Amazon Q Business. We show how to configure PagerDuty Advance as a data accessor for Amazon Q indexes, so you can search and access enterprise knowledge across multiple systems during incident response.

A generative AI prototype with Amazon Bedrock transforms life sciences and the genome analysis process

This post explores deploying a text-to-SQL pipeline using generative AI models and Amazon Bedrock to ask natural language questions to a genomics database. We demonstrate how to implement an AI assistant web interface with AWS Amplify and explain the prompt engineering strategies adopted to generate the SQL queries. Finally, we present instructions to deploy the service in your own AWS account.

Responsible AI in action: How Data Reply red teaming supports generative AI safety on AWS

In this post, we explore how AWS services can be seamlessly integrated with open source tools to help establish a robust red teaming mechanism within your organization. Specifically, we discuss Data Reply’s red teaming solution, a comprehensive blueprint to enhance AI safety and responsible AI practices.

Solution Architecture

Accelerate your Amazon Q implementation: starter kits for SMBs

Starter kits are complete, deployable solutions that address common, repeatable business problems. They deploy the services that make up a solution according to best practices, helping you optimize costs and become familiar with these kinds of architectural patterns without a large investment in training. In this post, we showcase a starter kit for Amazon Q Business. If you have a repository of documents that you need to turn into a knowledge base quickly, or simply want to test out the capabilities of Amazon Q Business without a large investment of time at the console, then this solution is for you.

How Aetion is using generative AI and Amazon Bedrock to translate scientific intent to results

Aetion is a leading provider of decision-grade real-world evidence software to biopharma, payors, and regulatory agencies. In this post, we review how Aetion is using Amazon Bedrock to help streamline the analytical process toward producing decision-grade real-world evidence and enable users without data science expertise to interact with complex real-world datasets.

Aetion Services

How Aetion is using generative AI and Amazon Bedrock to unlock hidden insights about patient populations

In this post, we review how Aetion’s Smart Subgroups Interpreter enables users to interact with Smart Subgroups using natural language queries. Powered by Amazon Bedrock and Anthropic’s Claude 3 large language models (LLMs), the interpreter responds to user questions expressed in conversational language about patient subgroups and provides insights to generate further hypotheses and evidence.

An introduction to preparing your own dataset for LLM training

In this blog post, we provide an introduction to preparing your own dataset for LLM training. Whether your goal is to fine-tune a pre-trained model for a specific task or to continue pre-training for domain-specific applications, having a well-curated dataset is crucial for achieving optimal performance.

Using natural language in Amazon Q Business: From searching and creating ServiceNow incidents and knowledge articles to generating insights

In this post, we’ll demonstrate how to configure an Amazon Q Business application and add a custom plugin that gives users the ability to use a natural language interface provided by Amazon Q Business to query real-time data and take actions in ServiceNow.

Architecture Diagram

Generate AWS Resilience Hub findings in natural language using Amazon Bedrock

This blog post discusses a solution that combines AWS Resilience Hub and Amazon Bedrock to generate architectural findings in natural language. By using the capabilities of Resilience Hub and Amazon Bedrock, you can share findings with C-suite executives, engineers, managers, and other personas within your corporation to provide better visibility over maintaining a resilient architecture.