Artificial Intelligence

Category: Intermediate (200)

Structured data response with Amazon Bedrock: Prompt Engineering and Tool Use

We demonstrate two methods for generating structured responses with Amazon Bedrock: Prompt Engineering and Tool Use with the Converse API. Prompt Engineering is flexible, works with Bedrock models (including those without Tool Use support), and handles various schema types (e.g., Open API schemas), making it a great starting point. Tool Use offers greater reliability, consistent results, seamless API integration, and runtime validation of JSON schema for enhanced control.

Time series plot of spacecraft velocity data in ECEF coordinates, showing three velocity components in blue, green, and yellow. Red markers indicate detected anomalies, with a purple dashed line representing the anomaly score throughout the time series.

Using Amazon SageMaker AI Random Cut Forest for NASA’s Blue Origin spacecraft sensor data

In this post, we demonstrate how to use SageMaker AI to apply the Random Cut Forest (RCF) algorithm to detect anomalies in spacecraft position, velocity, and quaternion orientation data from NASA and Blue Origin’s demonstration of lunar Deorbit, Descent, and Landing Sensors (BODDL-TP).

Build an intelligent multi-agent business expert using Amazon Bedrock

In this post, we demonstrate how to build a multi-agent system using multi-agent collaboration in Amazon Bedrock Agents to solve complex business questions in the biopharmaceutical industry. We show how specialized agents in research and development (R&D), legal, and finance domains can work together to provide comprehensive business insights by analyzing data from multiple sources.

Amazon Bedrock Agents observability using Arize AI

Today, we’re excited to announce a new integration between Arize AI and Amazon Bedrock Agents that addresses one of the most significant challenges in AI development: observability. In this post, we demonstrate the Arize Phoenix system for tracing and evaluation.

Chat for data prep options

No-code data preparation for time series forecasting using Amazon SageMaker Canvas

Amazon SageMaker Canvas offers no-code solutions that simplify data wrangling, making time series forecasting accessible to all users regardless of their technical background. In this post, we explore how SageMaker Canvas and SageMaker Data Wrangler provide no-code data preparation techniques that empower users of all backgrounds to prepare data and build time series forecasting models in a single interface with confidence.

Build a scalable AI video generator using Amazon SageMaker AI and CogVideoX

In recent years, the rapid advancement of artificial intelligence and machine learning (AI/ML) technologies has revolutionized various aspects of digital content creation. One particularly exciting development is the emergence of video generation capabilities, which offer unprecedented opportunities for companies across diverse industries. This technology allows for the creation of short video clips that can be […]

Accelerate foundation model training and inference with Amazon SageMaker HyperPod and Amazon SageMaker Studio

In this post, we discuss how SageMaker HyperPod and SageMaker Studio can improve and speed up the development experience of data scientists by using IDEs and tooling of SageMaker Studio and the scalability and resiliency of SageMaker HyperPod with Amazon EKS. The solution simplifies the setup for the system administrator of the centralized system by using the governance and security capabilities offered by the AWS services.

How Gardenia Technologies helps customers create ESG disclosure reports 75% faster using agentic generative AI on Amazon Bedrock

Gardenia Technologies, a data analytics company, partnered with the AWS Prototyping and Cloud Engineering (PACE) team to develop Report GenAI, a fully automated ESG reporting solution powered by the latest generative AI models on Amazon Bedrock. This post dives deep into the technology behind an agentic search solution using tooling with Retrieval Augmented Generation (RAG) and text-to-SQL capabilities to help customers reduce ESG reporting time by up to 75%. We demonstrate how AWS serverless technology, combined with agents in Amazon Bedrock, are used to build scalable and highly flexible agent-based document assistant applications.

Solution Architecture

Automate customer support with Amazon Bedrock, LangGraph, and Mistral models

In this post, we demonstrate how to use Amazon Bedrock and LangGraph to build a personalized customer support experience for an ecommerce retailer. By integrating the Mistral Large 2 and Pixtral Large models, we guide you through automating key customer support workflows such as ticket categorization, order details extraction, damage assessment, and generating contextual responses.