AWS Machine Learning Blog
Category: Intermediate (200)
Fine-tune Anthropic’s Claude 3 Haiku in Amazon Bedrock to boost model accuracy and quality
Frontier large language models (LLMs) like Anthropic Claude on Amazon Bedrock are trained on vast amounts of data, allowing Anthropic Claude to understand and generate human-like text. Fine-tuning Anthropic Claude 3 Haiku on proprietary datasets can provide optimal performance on specific domains or tasks. The fine-tuning as a deep level of customization represents a key […]
Build your multilingual personal calendar assistant with Amazon Bedrock and AWS Step Functions
This post shows you how to apply AWS services such as Amazon Bedrock, AWS Step Functions, and Amazon Simple Email Service (Amazon SES) to build a fully-automated multilingual calendar artificial intelligence (AI) assistant. It understands the incoming messages, translates them to the preferred language, and automatically sets up calendar reminders.
Medical content creation in the age of generative AI
Generative AI and transformer-based large language models (LLMs) have been in the top headlines recently. These models demonstrate impressive performance in question answering, text summarization, code, and text generation. Today, LLMs are being used in real settings by companies, including the heavily-regulated healthcare and life sciences industry (HCLS). The use cases can range from medical […]
Introducing guardrails in Amazon Bedrock Knowledge Bases
Amazon Bedrock Knowledge Bases is a fully managed capability that helps you securely connect foundation models (FMs) in Amazon Bedrock to your company data using Retrieval Augmented Generation (RAG). This feature streamlines the entire RAG workflow, from ingestion to retrieval and prompt augmentation, eliminating the need for custom data source integrations and data flow management. […]
Access control for vector stores using metadata filtering with Amazon Bedrock Knowledge Bases
In November 2023, we announced Amazon Bedrock Knowledge Bases as generally available. Knowledge bases allow Amazon Bedrock users to unlock the full potential of Retrieval Augmented Generation (RAG) by seamlessly integrating their company data into the language model’s generation process. This feature allows organizations to harness the power of large language models (LLMs) while making […]
Create an end-to-end serverless digital assistant for semantic search with Amazon Bedrock
With the rise of generative artificial intelligence (AI), an increasing number of organizations use digital assistants to have their end-users ask domain-specific questions, using Retrieval Augmented Generation (RAG) over their enterprise data sources. As organizations transition from proofs of concept to production workloads, they establish objectives to run and scale their workloads with minimal operational […]
Indian language RAG with Cohere multilingual embeddings and Anthropic Claude 3 on Amazon Bedrock
Media and entertainment companies serve multilingual audiences with a wide range of content catering to diverse audience segments. These enterprises have access to massive amounts of data collected over their many years of operations. Much of this data is unstructured text and images. Conventional approaches to analyzing unstructured data for generating new content rely on […]
Build an automated insight extraction framework for customer feedback analysis with Amazon Bedrock and Amazon QuickSight
In this post, we explore how to integrate LLMs into enterprise applications to harness their generative capabilities. We delve into the technical aspects of workflow implementation and provide code samples that you can quickly deploy or modify to suit your specific requirements. Whether you’re a developer seeking to incorporate LLMs into your existing systems or a business owner looking to take advantage of the power of NLP, this post can serve as a quick jumpstart.
Build safe and responsible generative AI applications with guardrails
Large language models (LLMs) enable remarkably human-like conversations, allowing builders to create novel applications. LLMs find use in chatbots for customer service, virtual assistants, content generation, and much more. However, the implementation of LLMs without proper caution can lead to the dissemination of misinformation, manipulation of individuals, and the generation of undesirable outputs such as […]
Improve visibility into Amazon Bedrock usage and performance with Amazon CloudWatch
In this blog post, we will share some of capabilities to help you get quick and easy visibility into Amazon Bedrock workloads in context of your broader application. We will use the contextual conversational assistant example in the Amazon Bedrock GitHub repository to provide examples of how you can customize these views to further enhance visibility, tailored to your use case. Specifically, we will describe how you can use the new automatic dashboard in Amazon CloudWatch to get a single pane of glass visibility into the usage and performance of Amazon Bedrock models and gain end-to-end visibility by customizing dashboards with widgets that provide visibility and insights into components and operations such as Retrieval Augmented Generation in your application.