AWS Machine Learning Blog
Category: Intermediate (200)
Automate the machine learning model approval process with Amazon SageMaker Model Registry and Amazon SageMaker Pipelines
This post illustrates how to use common architecture principles to transition from a manual monitoring process to one that is automated. You can use these principles and existing AWS services such as Amazon SageMaker Model Registry and Amazon SageMaker Pipelines to deliver innovative solutions to your customers while maintaining compliance for your ML workloads.
Use the ApplyGuardrail API with long-context inputs and streaming outputs in Amazon Bedrock
As generative artificial intelligence (AI) applications become more prevalent, maintaining responsible AI principles becomes essential. Without proper safeguards, large language models (LLMs) can potentially generate harmful, biased, or inappropriate content, posing risks to individuals and organizations. Applying guardrails helps mitigate these risks by enforcing policies and guidelines that align with ethical principles and legal requirements.Amazon […]
Configure Amazon Q Business with AWS IAM Identity Center trusted identity propagation
Amazon Q Business comes with rich API support to perform administrative tasks or to build an AI-assistant with customized user experience for your enterprise. With administrative APIs you can automate creating Q Business applications, set up data source connectors, build custom document enrichment, and configure guardrails. With conversation APIs, you can chat and manage conversations with Q Business AI assistant. Trusted identity propagation provides authorization based on user context, which enhances the privacy controls of Amazon Q Business. In this blog post, you will learn what trusted identity propagation is and why to use it, how to automate configuration of a trusted token issuer in AWS IAM Identity Center with provided AWS CloudFormation templates, and what APIs to invoke from your application facilitate calling Amazon Q Business identity-aware conversation APIs.
Build generative AI–powered Salesforce applications with Amazon Bedrock
In this post, we show how native integrations between Salesforce and Amazon Web Services (AWS) enable you to Bring Your Own Large Language Models (BYO LLMs) from your AWS account to power generative artificial intelligence (AI) applications in Salesforce. Requests and responses between Salesforce and Amazon Bedrock pass through the Einstein Trust Layer, which promotes responsible AI use across Salesforce.
Improve the productivity of your customer support and project management teams using Amazon Q Business and Atlassian Jira
Effective customer support and project management are critical aspects of providing effective customer relationship management. Atlassian Jira, a platform for issue tracking and project management functions for software projects, has become an indispensable part of many organizations’ workflows to ensure success of the customer and the product. However, extracting valuable insights from the vast amount […]
Detect and protect sensitive data with Amazon Lex and Amazon CloudWatch Logs
In today’s digital landscape, the protection of personally identifiable information (PII) is not just a regulatory requirement, but a cornerstone of consumer trust and business integrity. Organizations use advanced natural language detection services like Amazon Lex for building conversational interfaces and Amazon CloudWatch for monitoring and analyzing operational data. One risk many organizations face is […]
Metadata filtering for tabular data with Amazon Bedrock Knowledge Bases
Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading artificial intelligence (AI) companies like AI21 Labs, Anthropic, Cohere, Meta, Mistral AI, Stability AI, and Amazon through a single API. To equip FMs with up-to-date and proprietary information, organizations use Retrieval Augmented Generation (RAG), a technique that […]
Derive meaningful and actionable operational insights from AWS Using Amazon Q Business
As a customer, you rely on Amazon Web Services (AWS) expertise to be available and understand your specific environment and operations. Today, you might implement manual processes to summarize lessons learned, obtain recommendations, or expedite the resolution of an incident. This can be time consuming, inconsistent, and not readily accessible. This post shows how to […]
Governing the ML lifecycle at scale, Part 2: Multi-account foundations
Your multi-account strategy is the core of your foundational environment on AWS. Design decisions around your multi-account environment are critical for operating securely at scale. Grouping your workloads strategically into multiple AWS accounts enables you to apply different controls across workloads, track cost and usage, reduce the impact of account limits, and mitigate the complexity […]
Video auto-dubbing using Amazon Translate, Amazon Bedrock, and Amazon Polly
This post is co-written with MagellanTV and Mission Cloud. Video dubbing, or content localization, is the process of replacing the original spoken language in a video with another language while synchronizing audio and video. Video dubbing has emerged as a key tool in breaking down linguistic barriers, enhancing viewer engagement, and expanding market reach. However, […]