Artificial Intelligence
Category: Amazon SageMaker
How Indegene’s AI-powered social intelligence for life sciences turns social media conversations into insights
This post explores how Indegene’s Social Intelligence Solution uses advanced AI to help life sciences companies extract valuable insights from digital healthcare conversations. Built on AWS technology, the solution addresses the growing preference of HCPs for digital channels while overcoming the challenges of analyzing complex medical discussions on a scale.
Automate AIOps with Amazon SageMaker Unified Studio projects, Part 1: Solution architecture
This post presents architectural strategies and a scalable framework that helps organizations manage multi-tenant environments, automate consistently, and embed governance controls as they scale their AI initiatives with SageMaker Unified Studio.
Fine-tune OpenAI GPT-OSS models on Amazon SageMaker AI using Hugging Face libraries
Released on August 5, 2025, OpenAI’s GPT-OSS models, gpt-oss-20b and gpt-oss-120b, are now available on AWS through Amazon SageMaker AI and Amazon Bedrock. In this post, we walk through the process of fine-tuning a GPT-OSS model in a fully managed training environment using SageMaker AI training jobs.
Process multi-page documents with human review using Amazon Bedrock Data Automation and Amazon SageMaker AI
In this post, we show how to process multi-page documents with a human review loop using Amazon Bedrock Data Automation and Amazon SageMaker AI.
GPT OSS models from OpenAI are now available on SageMaker JumpStart
Today, we are excited to announce the availability of Open AI’s new open weight GPT OSS models, gpt-oss-120b and gpt-oss-20b, from OpenAI in Amazon SageMaker JumpStart. With this launch, you can now deploy OpenAI’s newest reasoning models to build, experiment, and responsibly scale your generative AI ideas on AWS. In this post, we demonstrate how to get started with these models on SageMaker JumpStart.
Introducing AWS Batch Support for Amazon SageMaker Training jobs
AWS Batch now seamlessly integrates with Amazon SageMaker Training jobs. In this post, we discuss the benefits of managing and prioritizing ML training jobs to use hardware efficiently for your business. We also walk you through how to get started using this new capability and share suggested best practices, including the use of SageMaker training plans.
Mistral-Small-3.2-24B-Instruct-2506 is now available on Amazon Bedrock Marketplace and Amazon SageMaker JumpStart
Today, we’re excited to announce that Mistral-Small-3.2-24B-Instruct-2506—a 24-billion-parameter large language model (LLM) from Mistral AI that’s optimized for enhanced instruction following and reduced repetition errors—is available for customers through Amazon SageMaker JumpStart and Amazon Bedrock Marketplace. Amazon Bedrock Marketplace is a capability in Amazon Bedrock that developers can use to discover, test, and use over […]
Customize Amazon Nova in Amazon SageMaker AI using Direct Preference Optimization
At the AWS Summit in New York City, we introduced a comprehensive suite of model customization capabilities for Amazon Nova foundation models. Available as ready-to-use recipes on Amazon SageMaker AI, you can use them to adapt Nova Micro, Nova Lite, and Nova Pro across the model training lifecycle, including pre-training, supervised fine-tuning, and alignment. In this post, we present a streamlined approach to customize Nova Micro in SageMaker training jobs.
Beyond accelerators: Lessons from building foundation models on AWS with Japan’s GENIAC program
In 2024, the Ministry of Economy, Trade and Industry (METI) launched the Generative AI Accelerator Challenge (GENIAC)—a Japanese national program to boost generative AI by providing companies with funding, mentorship, and massive compute resources for foundation model (FM) development. AWS was selected as the cloud provider for GENIAC’s second cycle (cycle 2). It provided infrastructure and technical guidance for 12 participating organizations.
Use generative AI in Amazon Bedrock for enhanced recommendation generation in equipment maintenance
In the manufacturing world, valuable insights from service reports often remain underutilized in document storage systems. This post explores how Amazon Web Services (AWS) customers can build a solution that automates the digitisation and extraction of crucial information from many reports using generative AI.








