AWS Machine Learning Blog

Category: Amazon SageMaker

Set up cross-account Amazon S3 access for Amazon SageMaker notebooks in VPC-only mode using Amazon S3 Access Points

Advancements in artificial intelligence (AI) and machine learning (ML) are revolutionizing the financial industry for use cases such as fraud detection, credit worthiness assessment, and trading strategy optimization. To develop models for such use cases, data scientists need access to various datasets like credit decision engines, customer transactions, risk appetite, and stress testing. Managing appropriate […]

Efficiently fine-tune the ESM-2 protein language model with Amazon SageMaker

In this post, we demonstrate how to efficiently fine-tune a state-of-the-art protein language model (pLM) to predict protein subcellular localization using Amazon SageMaker. Proteins are the molecular machines of the body, responsible for everything from moving your muscles to responding to infections. Despite this variety, all proteins are made of repeating chains of molecules called […]

Automate Amazon SageMaker Pipelines DAG creation

Creating scalable and efficient machine learning (ML) pipelines is crucial for streamlining the development, deployment, and management of ML models. In this post, we present a framework for automating the creation of a directed acyclic graph (DAG) for Amazon SageMaker Pipelines based on simple configuration files. The framework code and examples presented here only cover […]

Supercharge your AI team with Amazon SageMaker Studio: A comprehensive view of Deutsche Bahn’s AI platform transformation

AI’s growing influence in large organizations brings crucial challenges in managing AI platforms. These include developing a scalable and operationally efficient platform that adheres to organizational compliance and security standards. Amazon SageMaker Studio offers a comprehensive set of capabilities for machine learning (ML) practitioners and data scientists. These include a fully managed AI development environment […]

How Axfood enables accelerated machine learning throughout the organization using Amazon SageMaker

This is a guest post written by Axfood AB.  In this post, we share how Axfood, a large Swedish food retailer, improved operations and scalability of their existing artificial intelligence (AI) and machine learning (ML) operations by prototyping in close collaboration with AWS experts and using Amazon SageMaker. Axfood is Sweden’s second largest food retailer, […]

Streamline diarization using AI as an assistive technology: ZOO Digital’s story

ZOO Digital provides end-to-end localization and media services to adapt original TV and movie content to different languages, regions, and cultures. It makes globalization easier for the world’s best content creators. Trusted by the biggest names in entertainment, ZOO Digital delivers high-quality localization and media services at scale, including dubbing, subtitling, scripting, and compliance. Typical […]

Run ML inference on unplanned and spiky traffic using Amazon SageMaker multi-model endpoints

Amazon SageMaker multi-model endpoints (MMEs) are a fully managed capability of SageMaker inference that allows you to deploy thousands of models on a single endpoint. Previously, MMEs pre-determinedly allocated CPU computing power to models statically regardless the model traffic load, using Multi Model Server (MMS) as its model server. In this post, we discuss a […]

Code Llama 70B is now available in Amazon SageMaker JumpStart

Today, we are excited to announce that Code Llama foundation models, developed by Meta, are available for customers through Amazon SageMaker JumpStart to deploy with one click for running inference. Code Llama is a state-of-the-art large language model (LLM) capable of generating code and natural language about code from both code and natural language prompts. […]

Two graphs for timeseries. The top shows the timeseries for motor temperatures and motor speeds. The lower graph shows the anomaly score over time with three peaks that indicate anomalies..

Detect anomalies in manufacturing data using Amazon SageMaker Canvas

With the use of cloud computing, big data and machine learning (ML) tools like Amazon Athena or Amazon SageMaker have become available and useable by anyone without much effort in creation and maintenance. Industrial companies increasingly look at data analytics and data-driven decision-making to increase resource efficiency across their entire portfolio, from operations to performing […]

Skeleton-based pose annotation labeling using Amazon SageMaker Ground Truth

Pose estimation is a computer vision technique that detects a set of points on objects (such as people or vehicles) within images or videos. Pose estimation has real-world applications in sports, robotics, security, augmented reality, media and entertainment, medical applications, and more. Pose estimation models are trained on images or videos that are annotated with […]