AWS Machine Learning Blog
Category: Amazon SageMaker
Build a Hugging Face text classification model in Amazon SageMaker JumpStart
Amazon SageMaker JumpStart provides a suite of built-in algorithms, pre-trained models, and pre-built solution templates to help data scientists and machine learning (ML) practitioners get started on training and deploying ML models quickly. You can use these algorithms and models for both supervised and unsupervised learning. They can process various types of input data, including […]
How Dialog Axiata used Amazon SageMaker to scale ML models in production with AI Factory and reduced customer churn within 3 months
The telecommunications industry is more competitive than ever before. With customers able to easily switch between providers, reducing customer churn is a crucial priority for telecom companies who want to stay ahead. To address this challenge, Dialog Axiata has pioneered a cutting-edge solution called the Home Broadband (HBB) Churn Prediction Model. This post explores the […]
Amazon SageMaker now integrates with Amazon DataZone to streamline machine learning governance
Unlock ML governance with SageMaker-DataZone integration: streamline infrastructure, collaborate, and govern data/ML assets.
Boost employee productivity with automated meeting summaries using Amazon Transcribe, Amazon SageMaker, and LLMs from Hugging Face
This post presents a solution to automatically generate a meeting summary from a recorded virtual meeting (for example, using Amazon Chime) with several participants. The recording is transcribed to text using Amazon Transcribe and then processed using Amazon SageMaker Hugging Face containers to generate the meeting summary. The Hugging Face containers host a large language model (LLM) from the Hugging Face Hub.
Information extraction with LLMs using Amazon SageMaker JumpStart
Large language models (LLMs) have unlocked new possibilities for extracting information from unstructured text data. Although much of the current excitement is around LLMs for generative AI tasks, many of the key use cases that you might want to solve have not fundamentally changed. Tasks such as routing support tickets, recognizing customers intents from a […]
AWS Inferentia and AWS Trainium deliver lowest cost to deploy Llama 3 models in Amazon SageMaker JumpStart
Today, we’re excited to announce the availability of Meta Llama 3 inference on AWS Trainium and AWS Inferentia based instances in Amazon SageMaker JumpStart. The Meta Llama 3 models are a collection of pre-trained and fine-tuned generative text models. Amazon Elastic Compute Cloud (Amazon EC2) Trn1 and Inf2 instances, powered by AWS Trainium and AWS […]
Revolutionize Customer Satisfaction with tailored reward models for your business on Amazon SageMaker
As more powerful large language models (LLMs) are used to perform a variety of tasks with greater accuracy, the number of applications and services that are being built with generative artificial intelligence (AI) is also growing. With great power comes responsibility, and organizations want to make sure that these LLMs produce responses that align with […]
Simple guide to training Llama 2 with AWS Trainium on Amazon SageMaker
Large language models (LLMs) are making a significant impact in the realm of artificial intelligence (AI). Their impressive generative abilities have led to widespread adoption across various sectors and use cases, including content generation, sentiment analysis, chatbot development, and virtual assistant technology. Llama2 by Meta is an example of an LLM offered by AWS. Llama […]
Fine-tune and deploy language models with Amazon SageMaker Canvas and Amazon Bedrock
Imagine harnessing the power of advanced language models to understand and respond to your customers’ inquiries. Amazon Bedrock, a fully managed service providing access to such models, makes this possible. Fine-tuning large language models (LLMs) on domain-specific data supercharges tasks like answering product questions or generating relevant content. In this post, we show how Amazon […]
Cohere Command R and R+ are now available in Amazon SageMaker JumpStart
This blog post is co-written with Pradeep Prabhakaran from Cohere. Today, we are excited to announce that Cohere Command R and R+ foundation models are available through Amazon SageMaker JumpStart to deploy and run inference. Command R/R+ are the state-of-the-art retrieval augmented generation (RAG)-optimized models designed to tackle enterprise-grade workloads. In this post, we walk through how […]