Artificial Intelligence
Category: Amazon SageMaker
Advanced fine-tuning techniques for multi-agent orchestration: Patterns from Amazon at scale
In this post, we show you how fine-tuning enabled a 33% reduction in dangerous medication errors (Amazon Pharmacy), engineering 80% human effort reduction (Amazon Global Engineering Services), and content quality assessments improving 77% to 96% accuracy (Amazon A+). This post details the techniques behind these outcomes: from foundational methods like Supervised Fine-Tuning (SFT) (instruction tuning), and Proximal Policy Optimization (PPO), to Direct Preference Optimization (DPO) for human alignment, to cutting-edge reasoning optimizations such as Grouped-based Reinforcement Learning from Policy Optimization (GRPO), Direct Advantage Policy Optimization (DAPO), and Group Sequence Policy Optimization (GSPO) purpose-built for agentic systems.
From beginner to champion: A student’s journey through the AWS AI League ASEAN finals
The AWS AI League, launched by Amazon Web Services (AWS), expanded its reach to the Association of Southeast Asian Nations (ASEAN) last year, welcoming student participants from Singapore, Indonesia, Malaysia, Thailand, Vietnam, and the Philippines. In this blog post, you’ll hear directly from the AWS AI League champion, Blix D. Foryasen, as he shares his reflection on the challenges, breakthroughs, and key lessons discovered throughout the competition.
Transform AI development with new Amazon SageMaker AI model customization and large-scale training capabilities
This post explores how new serverless model customization capabilities, elastic training, checkpointless training, and serverless MLflow work together to accelerate your AI development from months to days.
How Omada Health scaled patient care by fine-tuning Llama models on Amazon SageMaker AI
This post is co-written with Sunaina Kavi, AI/ML Product Manager at Omada Health. Omada Health, a longtime innovator in virtual healthcare delivery, launched a new nutrition experience in 2025, featuring OmadaSpark, an AI agent trained with robust clinical input that delivers real-time motivational interviewing and nutrition education. It was built on AWS. OmadaSpark was designed […]
Accelerating LLM inference with post-training weight and activation using AWQ and GPTQ on Amazon SageMaker AI
Quantized models can be seamlessly deployed on Amazon SageMaker AI using a few lines of code. In this post, we explore why quantization matters—how it enables lower-cost inference, supports deployment on resource-constrained hardware, and reduces both the financial and environmental impact of modern LLMs, while preserving most of their original performance. We also take a deep dive into the principles behind PTQ and demonstrate how to quantize the model of your choice and deploy it on Amazon SageMaker.
Sentiment Analysis with Text and Audio Using AWS Generative AI Services: Approaches, Challenges, and Solutions
This post, developed through a strategic scientific partnership between AWS and the Instituto de Ciência e Tecnologia Itaú (ICTi), P&D hub maintained by Itaú Unibanco, the largest private bank in Latin America, explores the technical aspects of sentiment analysis for both text and audio. We present experiments comparing multiple machine learning (ML) models and services, discuss the trade-offs and pitfalls of each approach, and highlight how AWS services can be orchestrated to build robust, end-to-end solutions. We also offer insights into potential future directions, including more advanced prompt engineering for large language models (LLMs) and expanding the scope of audio-based analysis to capture emotional cues that text data alone might miss.
Architecting TrueLook’s AI-powered construction safety system on Amazon SageMaker AI
This post provides a detailed architectural overview of how TrueLook built its AI-powered safety monitoring system using SageMaker AI, highlighting key technical decisions, pipeline design patterns, and MLOps best practices. You will gain valuable insights into designing scalable computer vision solutions on AWS, particularly around model training workflows, automated pipeline creation, and production deployment strategies for real-time inference.
Speed meets scale: Load testing SageMakerAI endpoints with Observe.AI’s testing tool
Observe.ai developed the One Load Audit Framework (OLAF), which integrates with SageMaker to identify bottlenecks and performance issues in ML services, offering latency and throughput measurements under both static and dynamic data loads. In this blog post, you will learn how to use the OLAF utility to test and validate your SageMaker endpoint.
Migrate MLflow tracking servers to Amazon SageMaker AI with serverless MLflow
This post shows you how to migrate your self-managed MLflow tracking server to a MLflow App – a serverless tracking server on SageMaker AI that automatically scales resources based on demand while removing server patching and storage management tasks at no cost. Learn how to use the MLflow Export Import tool to transfer your experiments, runs, models, and other MLflow resources, including instructions to validate your migration’s success.
Optimizing LLM inference on Amazon SageMaker AI with BentoML’s LLM- Optimizer
In this post, we demonstrate how to optimize large language model (LLM) inference on Amazon SageMaker AI using BentoML’s LLM-Optimizer to systematically identify the best serving configurations for your workload.









