Artificial Intelligence
Category: Artificial Intelligence
Host concurrent LLMs with LoRAX
In this post, we explore how Low-Rank Adaptation (LoRA) can be used to address these challenges effectively. Specifically, we discuss using LoRA serving with LoRA eXchange (LoRAX) and Amazon Elastic Compute Cloud (Amazon EC2) GPU instances, allowing organizations to efficiently manage and serve their growing portfolio of fine-tuned models, optimize costs, and provide seamless performance for their customers.
Build a computer vision-based asset inventory application with low or no training
In this post, we present a solution using generative AI and large language models (LLMs) to alleviate the time-consuming and labor-intensive tasks required to build a computer vision application, enabling you to immediately start taking pictures of your asset labels and extract the necessary information to update the inventory using AWS services
Clario enhances the quality of the clinical trial documentation process with Amazon Bedrock
The collaboration between Clario and AWS demonstrated the potential of AWS AI and machine learning (AI/ML) services and generative AI models, such as Anthropic’s Claude, to streamline document generation processes in the life sciences industry and, specifically, for complicated clinical trial processes.
Optimizing Mixtral 8x7B on Amazon SageMaker with AWS Inferentia2
This post demonstrates how to deploy and serve the Mixtral 8x7B language model on AWS Inferentia2 instances for cost-effective, high-performance inference. We’ll walk through model compilation using Hugging Face Optimum Neuron, which provides a set of tools enabling straightforward model loading, training, and inference, and the Text Generation Inference (TGI) Container, which has the toolkit for deploying and serving LLMs with Hugging Face.
Build multi-agent systems with LangGraph and Amazon Bedrock
This post demonstrates how to integrate open-source multi-agent framework, LangGraph, with Amazon Bedrock. It explains how to use LangGraph and Amazon Bedrock to build powerful, interactive multi-agent applications that use graph-based orchestration.
Dynamic text-to-SQL for enterprise workloads with Amazon Bedrock Agents
This post demonstrates how enterprises can implement a scalable agentic text-to-SQL solution using Amazon Bedrock Agents, with advanced error-handling tools and automated schema discovery to enhance database query efficiency.
How TransPerfect Improved Translation Quality and Efficiency Using Amazon Bedrock
This post describes how the AWS Customer Channel Technology – Localization Team worked with TransPerfect to integrate Amazon Bedrock into the GlobalLink translation management system, a cloud-based solution designed to help organizations manage their multilingual content and translation workflows. Organizations use TransPerfect’s solution to rapidly create and deploy content at scale in multiple languages using AI.
Racing beyond DeepRacer: Debut of the AWS LLM League
The AWS LLM League was designed to lower the barriers to entry in generative AI model customization by providing an experience where participants, regardless of their prior data science experience, could engage in fine-tuning LLMs. Using Amazon SageMaker JumpStart, attendees were guided through the process of customizing LLMs to address real business challenges adaptable to their domain.
Reduce ML training costs with Amazon SageMaker HyperPod
In this post, we explore the challenges of large-scale frontier model training, focusing on hardware failures and the benefits of Amazon SageMaker HyperPod – a solution that minimizes disruptions, enhances efficiency, and reduces training costs.
Model customization, RAG, or both: A case study with Amazon Nova
The introduction of Amazon Nova models represent a significant advancement in the field of AI, offering new opportunities for large language model (LLM) optimization. In this post, we demonstrate how to effectively perform model customization and RAG with Amazon Nova models as a baseline. We conducted a comprehensive comparison study between model customization and RAG using the latest Amazon Nova models, and share these valuable insights.