Artificial Intelligence

Category: Artificial Intelligence

Building smarter AI agents: AgentCore long-term memory deep dive

In this post, we explore how Amazon Bedrock AgentCore Memory transforms raw conversational data into persistent, actionable knowledge through sophisticated extraction, consolidation, and retrieval mechanisms that mirror human cognitive processes. The system tackles the complex challenge of building AI agents that don’t just store conversations but extract meaningful insights, merge related information across time, and maintain coherent memory stores that enable truly context-aware interactions.

Configure and verify a distributed training cluster with AWS Deep Learning Containers on Amazon EKS

Misconfiguration issues in distributed training with Amazon EKS can be prevented following a systematic approach to launch required components and verify their proper configuration. This post walks through the steps to set up and verify an EKS cluster for training large models using DLCs.

Build a device management agent with Amazon Bedrock AgentCore

In this post, we explore how to build a conversational device management system using Amazon Bedrock AgentCore. With this solution, users can manage their IoT devices through natural language, using a UI for tasks like checking device status, configuring WiFi networks, and monitoring user activity.

How Amazon Bedrock Custom Model Import streamlined LLM deployment for Salesforce

This post shows how Salesforce integrated Amazon Bedrock Custom Model Import into their machine learning operations (MLOps) workflow, reused existing endpoints without application changes, and benchmarked scalability. We share key metrics on operational efficiency and cost optimization gains, and offer practical insights for simplifying your deployment strategy.

Medical dashboard showing blood test results with raw data table and parameter visualizations

Medical reports analysis dashboard using Amazon Bedrock, LangChain, and Streamlit

In this post, we demonstrate the development of a conceptual Medical Reports Analysis Dashboard that combines Amazon Bedrock AI capabilities, LangChain’s document processing, and Streamlit’s interactive visualization features. The solution transforms complex medical data into accessible insights through a context-aware chat system powered by large language models available through Amazon Bedrock and dynamic visualizations of health parameters.

A workflow diagram showing a data processing pipeline. Starting with "Get Case", it flows through several steps including a browser-based UI agent task, information extraction, and Human-in-the-loop processing. It also saves each case’s progress, updates the database, writes to Excel, and finally uploads to Amazon S3. The process runs while cases exist. Icons represent each step connected by directional arrows.

Kitsa transforms clinical trial site selection with Amazon Quick Automate

In this post, we’ll show how Kitsa, a health-tech company specializing in AI-driven clinical trial recruitment and site selection, used Amazon Quick Automate to transform their clinical trial site selection solution. Amazon Quick Automate, a capability of Amazon Quick Suite, enables enterprises to build, deploy and maintain resilient workflow automations at scale.

Connect Amazon Quick Suite to enterprise apps and agents with MCP

In this post, we explore how Amazon Quick Suite’s Model Context Protocol (MCP) client enables secure, standardized connections to enterprise applications and AI agents, eliminating the need for complex custom integrations. You’ll discover how to set up MCP Actions integrations with popular enterprise tools like Atlassian Jira and Confluence, AWS Knowledge MCP Server, and Amazon Bedrock AgentCore Gateway to create a collaborative environment where people and AI agents can seamlessly work together across your organization’s data and applications.