Artificial Intelligence

Category: Amazon Machine Learning

Parameta accelerates client email resolution with Amazon Bedrock Flows

In this post, we show you how Parameta used Amazon Bedrock Flows to transform their manual client email processing into an automated, intelligent workflow that reduced resolution times from weeks to days while maintaining high accuracy and operational control.

Efficiently build and tune custom log anomaly detection models with Amazon SageMaker

In this post, we walk you through the process to build an automated mechanism using Amazon SageMaker to process your log data, run training iterations over it to obtain the best-performing anomaly detection model, and register it with the Amazon SageMaker Model Registry for your customers to use it.

Optimizing costs of generative AI applications on AWS

Optimizing costs of generative AI applications on AWS is critical for realizing the full potential of this transformative technology. The post outlines key cost optimization pillars, including model selection and customization, token usage, inference pricing plans, and vector database considerations.

Improving Retrieval Augmented Generation accuracy with GraphRAG

Lettria, an AWS Partner, demonstrated that integrating graph-based structures into RAG workflows improves answer precision by up to 35% compared to vector-only retrieval methods. In this post, we explore why GraphRAG is more comprehensive and explainable than vector RAG alone, and how you can use this approach using AWS services and Lettria.

An introduction to preparing your own dataset for LLM training

In this blog post, we provide an introduction to preparing your own dataset for LLM training. Whether your goal is to fine-tune a pre-trained model for a specific task or to continue pre-training for domain-specific applications, having a well-curated dataset is crucial for achieving optimal performance.

Design multi-agent orchestration with reasoning using Amazon Bedrock and open source frameworks

This post provides step-by-step instructions for creating a collaborative multi-agent framework with reasoning capabilities to decouple business applications from FMs. It demonstrates how to combine Amazon Bedrock Agents with open source multi-agent frameworks, enabling collaborations and reasoning among agents to dynamically execute various tasks. The exercise will guide you through the process of building a reasoning orchestration system using Amazon Bedrock, Amazon Bedrock Knowledge Bases, Amazon Bedrock Agents, and FMs. We also explore the integration of Amazon Bedrock Agents with open source orchestration frameworks LangGraph and CrewAI for dispatching and reasoning.

Using natural language in Amazon Q Business: From searching and creating ServiceNow incidents and knowledge articles to generating insights

In this post, we’ll demonstrate how to configure an Amazon Q Business application and add a custom plugin that gives users the ability to use a natural language interface provided by Amazon Q Business to query real-time data and take actions in ServiceNow.

Simplify multimodal generative AI with Amazon Bedrock Data Automation

Amazon Bedrock Data Automation in public preview, offers a unified experience for developers of all skillsets to easily automate the extraction, transformation, and generation of relevant insights from documents, images, audio, and videos to build generative AI–powered applications. In this post, we demonstrate how to use Amazon Bedrock Data Automation in the AWS Management Console and the AWS SDK for Python (Boto3) for media analysis and intelligent document processing (IDP) workflows.

Architecture Diagram

How TUI uses Amazon Bedrock to scale content creation and enhance hotel descriptions in under 10 seconds

TUI Group is one of the world’s leading global tourism services, providing 21 million customers with an unmatched holiday experience in 180 regions. The TUI content teams are tasked with producing high-quality content for its websites, including product details, hotel information, and travel guides, often using descriptions written by hotel and third-party partners. In this post, we discuss how we used Amazon SageMaker and Amazon Bedrock to build a content generator that rewrites marketing content following specific brand and style guidelines.

Multi-tenant RAG with Amazon Bedrock Knowledge Bases

Organizations are continuously seeking ways to use their proprietary knowledge and domain expertise to gain a competitive edge. With the advent of foundation models (FMs) and their remarkable natural language processing capabilities, a new opportunity has emerged to unlock the value of their data assets. As organizations strive to deliver personalized experiences to customers using […]