Artificial Intelligence
Category: Amazon Bedrock
Unlocking enhanced legal document review with Lexbe and Amazon Bedrock
In this post, Lexbe, a legal document review software company, demonstrates how they integrated Amazon Bedrock and other AWS services to transform their document review process, enabling legal professionals to instantly query and extract insights from vast volumes of case documents using generative AI. Through collaboration with AWS, Lexbe achieved significant improvements in recall rates, reaching up to 90% by December 2024, and developed capabilities for broad human-style reporting and deep automated inference across multiple languages.
Demystifying Amazon Bedrock Pricing for a Chatbot Assistant
In this post, we’ll look at Amazon Bedrock pricing through the lens of a practical, real-world example: building a customer service chatbot. We’ll break down the essential cost components, walk through capacity planning for a mid-sized call center implementation, and provide detailed pricing calculations across different foundation models.
The DIVA logistics agent, powered by Amazon Bedrock
In this post, we discuss how DTDC and ShellKode used Amazon Bedrock to build DIVA 2.0, a generative AI-powered logistics agent.
Automate enterprise workflows by integrating Salesforce Agentforce with Amazon Bedrock Agents
This post explores a practical collaboration, integrating Salesforce Agentforce with Amazon Bedrock Agents and Amazon Redshift, to automate enterprise workflows.
How Amazon Bedrock powers next-generation account planning at AWS
In this post, we share how we built Account Plan Pulse, a generative AI tool designed to streamline and enhance the account planning process, using Amazon Bedrock. Pulse reduces review time and provides actionable account plan summaries for ease of collaboration and consumption, helping AWS sales teams better serve our customers.
Process multi-page documents with human review using Amazon Bedrock Data Automation and Amazon SageMaker AI
In this post, we show how to process multi-page documents with a human review loop using Amazon Bedrock Data Automation and Amazon SageMaker AI.
Cost tracking multi-tenant model inference on Amazon Bedrock
In this post, we demonstrate how to track and analyze multi-tenant model inference costs on Amazon Bedrock using the Converse API’s requestMetadata parameter. The solution includes an ETL pipeline using AWS Glue and Amazon QuickSight dashboards to visualize usage patterns, token consumption, and cost allocation across different tenants and departments.
AI judging AI: Scaling unstructured text analysis with Amazon Nova
In this post, we highlight how you can deploy multiple generative AI models in Amazon Bedrock to instruct an LLM model to create thematic summaries of text responses. We then show how to use multiple LLM models as a jury to review these LLM-generated summaries and assign a rating to judge the content alignment between the summary title and summary description.
Building an AI-driven course content generation system using Amazon Bedrock
In this post, we explore each component in detail, along with the technical implementation of the two core modules: course outline generation and course content generation.
How Handmade.com modernizes product image and description handling with Amazon Bedrock and Amazon OpenSearch Service
In this post, we explore how Handmade.com, a leading hand-crafts marketplace, modernized their product description handling by implementing an AI-driven pipeline using Amazon Bedrock and Amazon OpenSearch Service. The solution combines Anthropic’s Claude 3.7 Sonnet LLM for generating descriptions, Amazon Titan Text Embeddings V2 for vector embedding, and semantic search capabilities to automate and enhance product descriptions across their catalog of over 60,000 items.