AWS Machine Learning Blog

Category: Amazon Bedrock

Optimize query responses with user feedback using Amazon Bedrock embedding and few-shot prompting

This post demonstrates how Amazon Bedrock, combined with a user feedback dataset and few-shot prompting, can refine responses for higher user satisfaction. By using Amazon Titan Text Embeddings v2, we demonstrate a statistically significant improvement in response quality, making it a valuable tool for applications seeking accurate and personalized responses.

Integrate Amazon Bedrock Agents with Slack - Featured Image

Integrate Amazon Bedrock Agents with Slack

In this post, we present a solution to incorporate Amazon Bedrock Agents in your Slack workspace. We guide you through configuring a Slack workspace, deploying integration components in Amazon Web Services, and using this solution.

End to end architecture of a domain aware data processing pipeline for insurance documents

Build a domain‐aware data preprocessing pipeline: A multi‐agent collaboration approach

In this post, we introduce a multi-agent collaboration pipeline for processing unstructured insurance data using Amazon Bedrock, featuring specialized agents for classification, conversion, and metadata extraction. We demonstrate how this domain-aware approach transforms diverse data formats like claims documents, videos, and audio files into metadata-rich outputs that enable fraud detection, customer 360-degree views, and advanced analytics.

Automating complex document processing: How Onity Group built an intelligent solution using Amazon Bedrock

In this post, we explore how Onity Group, a financial services company specializing in mortgage servicing and origination, transformed their document processing capabilities using Amazon Bedrock and other AWS services. The solution helped Onity achieve a 50% reduction in document extraction costs while improving overall accuracy by 20% compared to their previous OCR and AI/ML solution.

HERE Technologies boosts developer productivity with new generative AI-powered coding assistant

HERE collaborated with the GenAIIC. Our joint mission was to create an intelligent AI coding assistant that could provide explanations and executable code solutions in response to users’ natural language queries. The requirement was to build a scalable system that could translate natural language questions into HTML code with embedded JavaScript, ready for immediate rendering as an interactive map that users can see on screen.

Figure 1 – Vxceed's LimoConnect Q architecture

Vxceed secures transport operations with Amazon Bedrock

AWS partnered with Vxceed to support their AI strategy, resulting in the development of LimoConnect Q, an innovative ground transportation management solution. Using AWS services including Amazon Bedrock and Lambda, Vxceed successfully built a secure, AI-powered solution that streamlines trip booking and document processing.

Securing Amazon Bedrock Agents: A guide to safeguarding against indirect prompt injections

Generative AI tools have transformed how we work, create, and process information. At Amazon Web Services (AWS), security is our top priority. Therefore, Amazon Bedrock provides comprehensive security controls and best practices to help protect your applications and data. In this post, we explore the security measures and practical strategies provided by Amazon Bedrock Agents to safeguard your AI interactions against indirect prompt injections, making sure that your applications remain both secure and reliable.

Architecture diagram describing Ingress access to EKS cluster for Bedrock

Build scalable containerized RAG based generative AI applications in AWS using Amazon EKS with Amazon Bedrock

In this post, we demonstrate a solution using Amazon Elastic Kubernetes Service (EKS) with Amazon Bedrock to build scalable and containerized RAG solutions for your generative AI applications on AWS while bringing your unstructured user file data to Amazon Bedrock in a straightforward, fast, and secure way.