Artificial Intelligence

Category: Amazon Bedrock Knowledge Bases

Tyson Foods elevates customer search experience with an AI-powered conversational assistant

In this post, we explore how Tyson Foods collaborated with the AWS Generative AI Innovation Center to revolutionize their customer interaction through an intuitive AI assistant integrated into their website. The AI assistant was built using Amazon Bedrock,

Empowering students with disabilities: University Startups’ generative AI solution for personalized student pathways

University Startups, headquartered in Bethesda, MD, was founded in 2020 to empower high school students to expand their education beyond a traditional curriculum. University Startups is focused on special education and related services in school districts throughout the US. In this post, we explain how University Startups uses generative AI technology on AWS to enable students to design a specific plan for their future either in education or the work force.

Ingestion & Text generation workflows

How Nippon India Mutual Fund improved the accuracy of AI assistant responses using advanced RAG methods on Amazon Bedrock

In this post, we examine a solution adopted by Nippon Life India Asset Management Limited that improves the accuracy of the response over a regular (naive) RAG approach by rewriting the user queries and aggregating and reranking the responses. The proposed solution uses enhanced RAG methods such as reranking to improve the overall accuracy

Multi-tenant RAG implementation with Amazon Bedrock and Amazon OpenSearch Service for SaaS using JWT

In this post, we introduce a solution that uses OpenSearch Service as a vector data store in multi-tenant RAG, achieving data isolation and routing using JWT and FGAC. This solution uses a combination of JWT and FGAC to implement strict tenant data access isolation and routing, necessitating the use of OpenSearch Service.

Use generative AI in Amazon Bedrock for enhanced recommendation generation in equipment maintenance

In the manufacturing world, valuable insights from service reports often remain underutilized in document storage systems. This post explores how Amazon Web Services (AWS) customers can build a solution that automates the digitisation and extraction of crucial information from many reports using generative AI.

Build real-time travel recommendations using AI agents on Amazon Bedrock

In this post, we show how to build a generative AI solution using Amazon Bedrock that creates bespoke holiday packages by combining customer profiles and preferences with real-time pricing data. We demonstrate how to use Amazon Bedrock Knowledge Bases for travel information, Amazon Bedrock Agents for real-time flight details, and Amazon OpenSearch Serverless for efficient package search and retrieval.

Building cost-effective RAG applications with Amazon Bedrock Knowledge Bases and Amazon S3 Vectors

In this post, we demonstrate how to integrate Amazon S3 Vectors with Amazon Bedrock Knowledge Bases for RAG applications. You’ll learn a practical approach to scale your knowledge bases to handle millions of documents while maintaining retrieval quality and using S3 Vectors cost-effective storage.

Amazon Bedrock Knowledge Bases now supports Amazon OpenSearch Service Managed Cluster as vector store

Amazon Bedrock Knowledge Bases has extended its vector store options by enabling support for Amazon OpenSearch Service managed clusters, further strengthening its capabilities as a fully managed Retrieval Augmented Generation (RAG) solution. This enhancement builds on the core functionality of Amazon Bedrock Knowledge Bases , which is designed to seamlessly connect foundation models (FMs) with internal data sources. This post provides a comprehensive, step-by-step guide on integrating an Amazon Bedrock knowledge base with an OpenSearch Service managed cluster as its vector store.

payu solution architecture

How PayU built a secure enterprise AI assistant using Amazon Bedrock

PayU offers a full-stack digital financial services system that serves the financial needs of merchants, banks, and consumers through technology. In this post, we explain how we equipped the PayU team with an enterprise AI solution and democratized AI access using Amazon Bedrock, without compromising on data residency requirements.