Artificial Intelligence

Category: Amazon Bedrock

Reduce CAPTCHAs for AI agents browsing the web with Web Bot Auth (Preview) in Amazon Bedrock AgentCore Browser

AI agents need to browse the web on your behalf. When your agent visits a website to gather information, complete a form, or verify data, it encounters the same defenses designed to stop unwanted bots: CAPTCHAs, rate limits, and outright blocks. Today, we are excited to share that AWS has a solution. Amazon Bedrock AgentCore […]

Graph showing latency cost

Generate Gremlin queries using Amazon Bedrock models

In this post, we explore an innovative approach that converts natural language to Gremlin queries using Amazon Bedrock models such as Amazon Nova Pro, helping business analysts and data scientists access graph databases without requiring deep technical expertise. The methodology involves three key steps: extracting graph knowledge, structuring the graph similar to text-to-SQL processing, and generating executable Gremlin queries through an iterative refinement process that achieved 74.17% overall accuracy in testing.

The solution’s workflow

Build scalable creative solutions for product teams with Amazon Bedrock

In this post, we explore how product teams can leverage Amazon Bedrock and AWS services to transform their creative workflows through generative AI, enabling rapid content iteration across multiple formats while maintaining brand consistency and compliance. The solution demonstrates how teams can deploy a scalable generative AI application that accelerates everything from product descriptions and marketing copy to visual concepts and video content, significantly reducing time to market while enhancing creative quality.

Build a proactive AI cost management system for Amazon Bedrock – Part 2

In this post, we explore advanced cost monitoring strategies for Amazon Bedrock deployments, introducing granular custom tagging approaches for precise cost allocation and comprehensive reporting mechanisms that build upon the proactive cost management foundation established in Part 1. The solution demonstrates how to implement invocation-level tagging, application inference profiles, and integration with AWS Cost Explorer to create a complete 360-degree view of generative AI usage and expenses.

Build a proactive AI cost management system for Amazon Bedrock – Part 1

In this post, we introduce a comprehensive solution for proactively managing Amazon Bedrock inference costs through a cost sentry mechanism designed to establish and enforce token usage limits, providing organizations with a robust framework for controlling generative AI expenses. The solution uses serverless workflows and native Amazon Bedrock integration to deliver a predictable, cost-effective approach that aligns with organizational financial constraints while preventing runaway costs through leading indicators and real-time budget enforcement.

Streamline code migration using Amazon Nova Premier with an agentic workflow

In this post, we demonstrate how Amazon Nova Premier with Amazon Bedrock can systematically migrate legacy C code to modern Java/Spring applications using an intelligent agentic workflow that breaks down complex conversions into specialized agent roles. The solution reduces migration time and costs while improving code quality through automated validation, security assessment, and iterative refinement processes that handle even large codebases exceeding token limitations.

sonic-multi-agent-diargam

Building a multi-agent voice assistant with Amazon Nova Sonic and Amazon Bedrock AgentCore

In this post, we explore how Amazon Nova Sonic’s speech-to-speech capabilities can be combined with Amazon Bedrock AgentCore to create sophisticated multi-agent voice assistants that break complex tasks into specialized, manageable components. The approach demonstrates how to build modular, scalable voice applications using a banking assistant example with dedicated sub-agents for authentication, banking inquiries, and mortgage services, offering a more maintainable alternative to monolithic voice assistant designs.

Iterative fine-tuning on Amazon Bedrock for strategic model improvement

Organizations often face challenges when implementing single-shot fine-tuning approaches for their generative AI models. The single-shot fine-tuning method involves selecting training data, configuring hyperparameters, and hoping the results meet expectations without the ability to make incremental adjustments. Single-shot fine-tuning frequently leads to suboptimal results and requires starting the entire process from scratch when improvements are […]

ML-18814-Featured-Image

Voice AI-powered drive-thru ordering with Amazon Nova Sonic and dynamic menu displays

In this post, we’ll demonstrate how to implement a Quick Service Restaurants (QSRs) drive-thru solution using Amazon Nova Sonic and AWS services. We’ll walk through building an intelligent system that combines voice AI with interactive menu displays, providing technical insights and implementation guidance to help restaurants modernize their drive-thru operations.