Artificial Intelligence

Category: Artificial Intelligence

Structured outputs on Amazon Bedrock: Schema-compliant AI responses

Today, we’re announcing structured outputs on Amazon Bedrock—a capability that fundamentally transforms how you can obtain validated JSON responses from foundation models through constrained decoding for schema compliance. In this post, we explore the challenges of traditional JSON generation and how structured outputs solves them. We cover the two core mechanisms—JSON Schema output format and strict tool use—along with implementation details, best practices, and practical code examples.

Manage Amazon SageMaker HyperPod clusters using the HyperPod CLI and SDK

In this post, we demonstrate how to use the CLI and the SDK to create and manage SageMaker HyperPod clusters in your AWS account. We walk through a practical example and dive deeper into the user workflow and parameter choices.

Evaluate generative AI models with an Amazon Nova rubric-based LLM judge on Amazon SageMaker AI (Part 2)

In this post, we explore the Amazon Nova rubric-based judge feature: what a rubric-based judge is, how the judge is trained, what metrics to consider, and how to calibrate the judge. We chare notebook code of the Amazon Nova rubric-based LLM-as-a-judge methodology to evaluate and compare the outputs of two different LLMs using SageMaker training jobs.

How Associa transforms document classification with the GenAI IDP Accelerator and Amazon Bedrock

Associa collaborated with the AWS Generative AI Innovation Center to build a generative AI-powered document classification system aligning with Associa’s long-term vision of using generative AI to achieve operational efficiencies in document management. The solution automatically categorizes incoming documents with high accuracy, processes documents efficiently, and provides substantial cost savings while maintaining operational excellence. The document classification system, developed using the Generative AI Intelligent Document Processing (GenAI IDP) Accelerator, is designed to integrate seamlessly into existing workflows. It revolutionizes how employees interact with document management systems by reducing the time spent on manual classification tasks.

Accelerating your marketing ideation with generative AI – Part 2: Generate custom marketing images from historical references

Building upon our earlier work of marketing campaign image generation using Amazon Nova foundation models, in this post, we demonstrate how to enhance image generation by learning from previous marketing campaigns. We explore how to integrate Amazon Bedrock, AWS Lambda, and Amazon OpenSearch Serverless to create an advanced image generation system that uses reference campaigns to maintain brand guidelines, deliver consistent content, and enhance the effectiveness and efficiency of new campaign creation.

Democratizing business intelligence: BGL’s journey with Claude Agent SDK and Amazon Bedrock AgentCore

BGL is a leading provider of self-managed superannuation fund (SMSF) administration solutions that help individuals manage the complex compliance and reporting of their own or a client’s retirement savings, serving over 12,700 businesses across 15 countries. In this blog post, we explore how BGL built its production-ready AI agent using Claude Agent SDK and Amazon Bedrock AgentCore.

AI agents in enterprises: Best practices with Amazon Bedrock AgentCore

This post explores nine essential best practices for building enterprise AI agents using Amazon Bedrock AgentCore. Amazon Bedrock AgentCore is an agentic platform that provides the services you need to create, deploy, and manage AI agents at scale. In this post, we cover everything from initial scoping to organizational scaling, with practical guidance that you can apply immediately.

Agentic AI for healthcare data analysis with Amazon SageMaker Data Agent

On November 21, 2025, Amazon SageMaker introduced a built-in data agent within Amazon SageMaker Unified Studio that transforms large-scale data analysis. In this post, we demonstrate, through a detailed case study of an epidemiologist conducting clinical cohort analysis, how SageMaker Data Agent can help reduce weeks of data preparation into days, and days of analysis development into hours—ultimately accelerating the path from clinical questions to research conclusions.