Artificial Intelligence
Category: Analytics
Natural language-based database analytics with Amazon Nova
In this post, we explore how natural language database analytics can revolutionize the way organizations interact with their structured data through the power of large language model (LLM) agents. Natural language interfaces to databases have long been a goal in data management. Agents enhance database analytics by breaking down complex queries into explicit, verifiable reasoning steps and enabling self-correction through validation loops that can catch errors, analyze failures, and refine queries until they accurately match user intent and schema requirements.
Deploy Amazon Bedrock Knowledge Bases using Terraform for RAG-based generative AI applications
In this post, we demonstrated how to automate the deployment of Amazon Knowledge Bases for RAG applications using Terraform.
Learn how Amazon Health Services improved discovery in Amazon search using AWS ML and gen AI
In this post, we show you how Amazon Health Services (AHS) solved discoverability challenges on Amazon.com search using AWS services such as Amazon SageMaker, Amazon Bedrock, and Amazon EMR. By combining machine learning (ML), natural language processing, and vector search capabilities, we improved our ability to connect customers with relevant healthcare offerings.
Speed up delivery of ML workloads using Code Editor in Amazon SageMaker Unified Studio
In this post, we walk through how you can use the new Code Editor and multiple spaces support in SageMaker Unified Studio. The sample solution shows how to develop an ML pipeline that automates the typical end-to-end ML activities to build, train, evaluate, and (optionally) deploy an ML model.
Tyson Foods elevates customer search experience with an AI-powered conversational assistant
In this post, we explore how Tyson Foods collaborated with the AWS Generative AI Innovation Center to revolutionize their customer interaction through an intuitive AI assistant integrated into their website. The AI assistant was built using Amazon Bedrock,
Building a RAG chat-based assistant on Amazon EKS Auto Mode and NVIDIA NIMs
In this post, we demonstrate the implementation of a practical RAG chat-based assistant using a comprehensive stack of modern technologies. The solution uses NVIDIA NIMs for both LLM inference and text embedding services, with the NIM Operator handling their deployment and management. The architecture incorporates Amazon OpenSearch Serverless to store and query high-dimensional vector embeddings for similarity search.
Build a conversational natural language interface for Amazon Athena queries using Amazon Nova
In this post, we explore an innovative solution that uses Amazon Bedrock Agents, powered by Amazon Nova Lite, to create a conversational interface for Athena queries. We use AWS Cost and Usage Reports (AWS CUR) as an example, but this solution can be adapted for other databases you query using Athena. This approach democratizes data access while preserving the powerful analytical capabilities of Athena, so you can interact with your data using natural language.
How Indegene’s AI-powered social intelligence for life sciences turns social media conversations into insights
This post explores how Indegene’s Social Intelligence Solution uses advanced AI to help life sciences companies extract valuable insights from digital healthcare conversations. Built on AWS technology, the solution addresses the growing preference of HCPs for digital channels while overcoming the challenges of analyzing complex medical discussions on a scale.
Automate AIOps with SageMaker Unified Studio Projects, Part 2: Technical implementation
In this post, we focus on implementing this architecture with step-by-step guidance and reference code. We provide a detailed technical walkthrough that addresses the needs of two critical personas in the AI development lifecycle: the administrator who establishes governance and infrastructure through automated templates, and the data scientist who uses SageMaker Unified Studio for model development without managing the underlying infrastructure.
Cost tracking multi-tenant model inference on Amazon Bedrock
In this post, we demonstrate how to track and analyze multi-tenant model inference costs on Amazon Bedrock using the Converse API’s requestMetadata parameter. The solution includes an ETL pipeline using AWS Glue and Amazon QuickSight dashboards to visualize usage patterns, token consumption, and cost allocation across different tenants and departments.