ข้ามไปที่เนื้อหาหลัก

ความแตกต่างระหว่างข้อมูลการสังเกตและการติดตามตรวจสอบคืออะไร

ข้อมูลการสังเกตและการติดตามตรวจสอบใน DevOps เป็นกระบวนการที่ใช้ข้อมูลที่แตกต่างกัน 2 กระบวนการ คุณสามารถใช้บริการเหล่านี้เพื่อรักษาและจัดการความสมบูรณ์และประสิทธิภาพของสถาปัตยกรรมไมโครเซอร์วิสแบบกระจายและโครงสร้างพื้นฐานของสถาปัตยกรรมไมโครเซอร์วิสแบบกระจายได้ ระบบแบบกระจายจะทำงานโดยการแลกเปลี่ยนข้อมูลระหว่างส่วนประกอบต่าง ๆ หลายสิบถึงหลายร้อย หรืออาจหลายพันรายการ 

การติดตามตรวจสอบเป็นกระบวนการรวบรวมข้อมูลและสร้างรายงานเกี่ยวกับเมตริกต่าง ๆ ที่กำหนดความสมบูรณ์ของระบบ ส่วนข้อมูลการสังเกตค่อนข้างเป็นวิธีในการสืบสวนมากกว่า โดยจะพิจารณาอย่างใกล้ชิดที่การโต้ตอบของส่วนประกอบระบบแบบกระจายและข้อมูลที่รวบรวมโดยการตรวจสอบเพื่อค้นหาสาเหตุของปัญหา ซึ่งประกอบด้วยกิจกรรมต่าง ๆ เช่น การวิเคราะห์เส้นทางการติดตาม ซึ่งเป็นกระบวนการที่ติดตามเส้นทางของคำขอผ่านระบบเพื่อระบุความล้มเหลวในการรวมระบบ การติดตามตรวจสอบจะรวบรวมข้อมูลในแต่ละองค์ประกอบ และข้อมูลการสังเกตจะดูที่ระบบแบบกระจายโดยรวม

อ่านเพิ่มเติมเกี่ยวกับ DevOps

วิธีการทำงานระหว่างข้อมูลการสังเกตและการติดตามตรวจสอบ

การสังเกตและการตรวจสอบเป็นกระบวนการที่สำคัญในการเรียกใช้โปรแกรม DevOps ที่มีประสิทธิภาพ

การตรวจสอบ

การตรวจสอบระบบคอมพิวเตอร์เป็นแนวทางปฏิบัติที่เก่าแก่พอๆ กับการเรียกใช้ระบบคอมพิวเตอร์ด้วยตัวเอง กระบวนการตรวจสอบรวบรวมข้อมูลเกี่ยวกับระบบเพื่อตรวจสอบว่าระบบทำงานตามที่คาดไว้หรือไม่ รวมถึงรายงานและการแจ้งเตือนเกี่ยวกับข้อผิดพลาดความผิดพลาดหรือค่าข้อมูลที่ผิดปกติ 

ตัวอย่างเช่น เครื่องมือติดตามตรวจสอบสามารถรวบรวมข้อมูลเพื่อตรวจวัดเวลาที่ใช้ในการปรับใช้การเปิดตัวแอปพลิเคชันได้ หากเวลาที่ใช้นั้นอยู่นอกกรอบเวลาที่คาดหวังไว้ เครื่องมือติดตามตรวจสอบจะสามารถแจ้งเตือนให้กับผู้ใช้ได้ โดยระบุว่ามีบางอย่างผิดปกติเกิดขึ้น 

การติดตามตรวจสอบ DevOps จะครอบคลุมไปถึงวงจรชีวิตการพัฒนาซอฟต์แวร์แบบเต็มรูปแบบ (SDLC) การตรวจสอบประสิทธิภาพของแอปพลิเคชัน (APM) เป็นส่วนย่อยเฉพาะของการติดตามตรวจสอบ DevOps ที่เน้นไปที่แอปพลิเคชันที่ทำงานในการผลิต ซึ่งจะจัดลำดับความสำคัญของเมตริกที่ใช้กับประสบการณ์ผู้ใช้เป็นอันดับแรก

อ่านเพิ่มเติมเกี่ยวกับวงจรการพัฒนาซอฟต์แวร์

อ่านข้อมูลเกี่ยวกับการติดตามตรวจสอบประสิทธิภาพของแอปพลิเคชัน

การสังเกตการณ์

ข้อมูลการสังเกตจะทำให้ได้รับขอบเขตและการมองเห็นที่กว้างขึ้นสำหรับเครื่องมือติดตามตรวจสอบแบบดั้งเดิม โดยจะผสมผสานข้อมูลสถานการณ์และประวัติเพิ่มเติมและการโต้ตอบของระบบ ช่วยให้สามารถตรวจสอบสาเหตุที่แท้จริงของการแจ้งเตือนการติดตามตรวจสอบ ควบคู่ไปกับความสามารถในการตรวจสอบปัญหาที่เกิดขึ้นเนื่องจากการโต้ตอบหลายองค์ประกอบ

คุณสามารถใช้เครื่องมือสังเกตเพื่อดีบักระบบที่ใช้สถาปัตยกรรมแอปพลิเคชันแบบกระจายได้ด้วยตนเอง นอกจากนี้ คุณยังสามารถใช้สิ่งเหล่านี้เพื่อสังเกตความสมบูรณ์ของระบบโดยรวมแบบเรียลไทม์และการโต้ตอบระหว่างส่วนประกอบของระบบได้อีกด้วย คุณสามารถใช้ซอฟต์แวร์ข้อมูลการสังเกตเพื่อเชื่อมโยงระบบที่เชื่อมต่อถึงกันทั้งหมด รวมถึงการพึ่งพากันของระบบ และการโต้ตอบแบบเรียลไทม์ได้

ความคล้ายคลึงกันระหว่างข้อมูลการสังเกตและการติดตามตรวจสอบคืออะไร

ทั้งข้อมูลการสังเกตและการติดตามตรวจสอบนั้นมีต้นกำเนิดมาจากสาขาทฤษฎีการควบคุม วิศวกรรมระบบ และฟิลด์ทางคณิตศาสตร์ มีการใช้งานคุณสมบัติทั้ง 2 แบบอย่างแพร่หลายทั่วทั้งการประมวลผลและสภาพแวดล้อมทางกายภาพที่ผสมผสานการประมวลผลเพื่อบำรุงรักษาสถานะประสิทธิภาพและประสิทธิภาพของระบบ ใน DevOps คำต่าง ๆ มักจะใช้แทนกันได้ เนื่องจากทั้งสองคำเกี่ยวข้องกับข้อมูลการวัดและส่งข้อมูลทางไกล เช่น หน่วยวัด เหตุการณ์ ข้อมูลบันทึก และการตามรอย

ตัววัด

เมตริกคือการวัดข้อมูลระบบ ตัวอย่างเช่น เมตริกอาจเป็นอัตราการโอนถ่ายข้อมูลของเครือข่ายหรือจำนวนข้อผิดพลาดของแอปพลิเคชันภายในหนึ่งสัปดาห์ การติดตามตรวจสอบจะรายงานเกี่ยวกับตัวเมตริก และข้อมูลการสังเกตจะมองหาวิธีปรับปรุงค่าของเมตริกเหล่านั้น

เหตุการณ์

เหตุการณ์คือการดำเนินการที่เกิดขึ้นในระบบ ณ เวลาใดเวลาหนึ่ง ตัวอย่างอาจเป็นผู้ใช้เปลี่ยนรหัสผ่านหรือการแจ้งเตือนที่ระบุว่ามีการพยายามใช้รหัสผ่านเป็นจำนวนมาก เหตุการณ์จะกระตุ้นให้เกิดการติดตามตรวจสอบและรองรับข้อมูลการสังเกตในการสืบสวนเหตุการณ์

ข้อมูลบันทึก

ข้อมูลบันทึกคือไฟล์ที่สร้างโดยซอฟต์แวร์ซึ่งมีข้อมูลเกี่ยวกับการดำเนินงาน กิจกรรม และรูปแบบการใช้งานของระบบ ซึ่งรวมถึงบันทึกประวัติของกระบวนการ เหตุการณ์ และข้อความทั้งหมดพร้อมกับข้อมูลเชิงอธิบายเพิ่มเติม เช่น การประทับเวลา เพื่อทำให้ข้อมูลนี้มีบริบท การติดตามตรวจสอบจะสร้างข้อมูลบันทึกที่ข้อมูลการสังเกตใช้สำหรับการวิเคราะห์ระบบเพิ่มเติม

อ่านเกี่ยวกับไฟล์ข้อมูลบันทึก

การตามรอย

การตามรอยคือเส้นทางเต็มของการดำเนินการเดียวในระบบที่เกี่ยวข้องซึ่งกันและกัน สำหรับการติดตามแบบกระจายอย่างสมบูรณ์ สัญญาณจะต้องถูกปล่อยออกมาจากทุกธุรกรรมในสถาปัตยกรรมไมโครเซอร์วิสสำหรับการติดตาม การติดตามตรวจสอบจะช่วยให้สามารถตามรอยได้ ซึ่งเป็นหน้าที่สำคัญของข้อมูลการสังเกต

ข้อมูลการสังเกตและการติดตามตรวจสอบ: ความแตกต่างที่สำคัญ

การติดตามตรวจสอบเป็นองค์ประกอบหลักที่สำคัญของข้อมูลการสังเกต การติดตามตรวจสอบที่ครอบคลุมจะสร้างเมตริก เหตุการณ์ ข้อมูลบันทึก และการตามรอยที่มีนัยสำคัญที่จะวัดสิ่งที่จำเป็นในลักษณะที่สามารถระบุตัวตนและเรียกคืนได้ง่าย บันทึกในอดีตจะถูกจัดเก็บควบคู่ไปกับการวัดในปัจจุบันเพื่อสร้างภาพรวมของระบบในระดับต่าง ๆ ข้อมูลการสังเกตสามารถใช้สิ่งที่การตรวจสอบสร้างขึ้นเพื่อตรวจสอบเหตุการณ์ได้ลึกยิ่งขึ้น

การติดตามตรวจสอบคือเวลาและลักษณะของข้อผิดพลาดของระบบ ส่วนข้อมูลการสังเกตคือสาเหตุและวิธีการ มีสัญญาณมากมายในการวางแผนและตรวจสอบเพื่อให้ได้ภาพรวมของสถานะภายในและประสิทธิภาพของระบบทั้งหมด คุณต้องจำเป็นต้องมีข้อมูลทั้งหมดนี้เพื่อให้สามารถดำเนินการสืบสวนได้อย่างมีประสิทธิภาพ เพื่อให้ข้อมูลการสังเกตมีประโยชน์และมีประสิทธิผล การติดตามตรวจสอบจะต้องมีความครอบคลุมและมีคำอธิบาย

ความผิดปกติ

เมื่อใช้ระบบการติดตามตรวจสอบ คุณจะสามารถค้นพบความผิดปกติหรือพฤติกรรมที่ผิดปกติในสถานะและประสิทธิภาพของระบบได้ เมื่อใช้ข้อมูลการสังเกต คุณจะสามารถตรวจสอบความผิดปกติเพิ่มเติมได้ แม้ว่าจะเกิดขึ้นเนื่องจากการโต้ตอบระหว่างส่วนประกอบบริการหลายร้อยรายการก็ตาม

สาเหตุและผลกระทบ

การติดตามตรวจสอบจะมุ่งเน้นไปที่การวัดค่าบางอย่างเพื่อดูว่ามีผลกระทบต่อระบบหรือไม่ เป้าหมายของข้อมูลการสังเกตคือการเข้าใจสาเหตุของผลกระทบดังกล่าว ตัวอย่างเช่น เมื่อมีการเผยแพร่โค้ดใหม่ การติดตามตรวจสอบจะติดตามการวัดผลของระบบเพื่อดูว่าเวลาในการโหลดแอปพลิเคชันหรือเวลาในการดึงข้อมูลได้รับผลกระทบจากการเปลี่ยนแปลงหรือไม่ ในกรณีที่มีผลกระทบ ข้อมูลการสังเกตจะตรวจสอบเหตุผลหรือสาเหตุ โดยจะตอบคำถามได้ว่าส่วนใดของการเปลี่ยนแปลงโค้ดที่ทำให้เกิดผลกระทบพร้อมนำเสนอวิธีแก้ไข

การโต้ตอบของระบบ

โดยทั่วไปแล้วการติดตามตรวจสอบจะวัดความสมบูรณ์ของระบบโดยเฉพาะ โดยรวบรวมข้อมูลเกี่ยวกับส่วนประกอบต่าง ๆ ของระบบทั้งหมด แต่ข้อมูลอาจถูกแยกออกจากกัน และอาจจะเข้าใจถึงความสัมพันธ์กันของข้อมูลได้ยาก เมื่อใช้ข้อมูลการสังเกต คุณจะได้รับมุมมองโดยรวมของระบบที่เกี่ยวข้องกันทั้งหมด เพื่อทำความเข้าใจว่าปัญหาเกิดขึ้นที่ไหนและเกิดขึ้นอย่างไร

เมื่อใดที่ควรใช้ข้อมูลการสังเกตเทียบกับการติดตามตรวจสอบ

การตรวจจับข้อผิดพลาดย้อนหลัง เช่น การเรียนรู้การหยุดทำงานจากผู้ใช้หรือการค้นหาแอปพลิเคชันที่ทำงานบนระบบเป้าหมายที่ไม่ถูกต้อง อาจส่งผลให้สูญเสียเวลา เงิน ชื่อเสียง และทรัพยากรของนักพัฒนา การติดตามตรวจสอบเป็นสิ่งจำเป็นสำหรับการตรวจจับข้อผิดพลาดเชิงรุก เครื่องมือติดตามตรวจสอบจะเพิ่มการแจ้งเตือนสำหรับความคลาดเคลื่อนทุกประเภทที่คุณสามารถระบุและแก้ไขได้ก่อนที่จะก่อให้เกิดผลกระทบระยะยาว

ระบบที่สังเกตได้จะเพิ่มความสามารถในการติดตามตรวจสอบที่มีอยู่ จำเป็นอย่างยิ่งในการเรียกใช้สถาปัตยกรรมแอปพลิเคชันไมโครเซอร์วิส โดยเฉพาะอย่างยิ่งเมื่อมีการปรับใช้กับโครงสร้างพื้นฐานคลาวด์แบบกระจาย เมื่อใช้การติดตามตรวจสอบเพียงอย่างเดียว มันแทบจะเป็นไปไม่ได้เลยที่จะระบุและแยกแอปพลิเคชันหรือบริการที่ข้อผิดพลาดเริ่มต้นขึ้น การจับและติดตามข้อมูลที่ถูกต้อง ควบคู่ไปกับข้อมูลการสังเกต ทำให้คุณสามารถติดตามข้อผิดพลาดผ่านระบบที่ซับซ้อนได้

สรุปความแตกต่างระหว่าง การติดตามตรวจสอบกับข้อมูลการสังเกต

 

การตรวจสอบ

การสังเกตการณ์

คืออะไร

การวัดและการรายงานเมตริกเฉพาะภายในระบบ เพื่อให้มั่นใจถึงความสมบูรณ์ของระบบ

การรวบรวมเมตริก เหตุการณ์ ข้อมูลบันทึก และการติดตามเพื่อให้สามารถตรวจสอบข้อกังวลด้านประสิทธิภาพในเชิงลึกในระบบแบบกระจายด้วยสถาปัตยกรรมไมโครเซอร์วิส

หลักสำคัญ

รวบรวมข้อมูลเพื่อระบุผลกระทบของระบบที่ผิดปกติ

ตรวจสอบสาเหตุที่แท้จริงของผลกระทบของระบบที่ผิดปกติ

ระบบที่เกี่ยวข้อง

โดยทั่วไปจะเกี่ยวข้องกับระบบสแตนด์อโลน

โดยทั่วไปจะเกี่ยวข้องกับระบบที่แตกต่างกันหลายระบบ

การตรวจสอบแบบย้อนกลับ

จำกัดอยู่ที่ Edge (ขอบ) ของระบบ

ใช้งานได้เมื่อมีการส่งสัญญาณผ่านสถาปัตยกรรมระบบที่แตกต่างกัน

การค้นพบข้อผิดพลาดของระบบ

เวลาและลักษณะ

สาเหตุและวิธีการ

AWS จะช่วยในด้านข้อมูลการสังเกตและการตรวจสอบของคุณได้อย่างไร

AWS Cloud Oper ations มีแบบจำลองและเครื่องมือสำหรับวิธีที่ปลอดภัยและมีประสิทธิภาพในการทำงานในคลาวด์ คุณสามารถปฏิรูปองค์กรของคุณ ปรับปรุงและย้ายแอปพลิเคชันของคุณให้ทันสมัย และเร่งสร้างนวัตกรรมด้วย Amazon Web Services (AWS) 

ด้วยการตรวจสอบและข้อมูลการสังเกตในการดำเนินงานบนคลาวด์ คุณสามารถรวบรวม เชื่อมต่อ และวิเคราะห์การวัดและส่งข้อมูลทางไกลได้ สิ่งนี้ใช้ได้กับเครือข่าย โครงสร้างพื้นฐาน และแอปพลิเคชันของคุณในระบบคลาวด์ ไฮบริด หรือในองค์กร คุณสามารถรับข้อมูลเชิงลึกเกี่ยวกับพฤติกรรม ประสิทธิภาพ และสุขภาพของระบบของคุณ ด้วยข้อมูลเชิงลึกเหล่านี้ คุณสามารถตรวจจับ ตรวจสอบ และแก้ไขปัญหาได้รวดเร็วยิ่งขึ้น เมื่อใช้ร่วมกับปัญ ญาประดิ ษฐ์ (AI) และการ เรียนรู้ของเครื่อง (ML) คุณสามารถใช้ข้อมูลเชิงลึกเหล่านี้เพื่อตอบสนองเชิงรุก ทำนายและป้องกันปัญหาได้

ตัวอย่างเช่น คุณสามารถใช้:

  • AWS X-Ray เพื่อวิเคราะห์และแก้ไขข้อบกพร่องในการผลิตและแอปพลิเคชันแบบกระจาย ติดตามคำขอของผู้ใช้ ระบุจุดขวด และตรวจสอบประสิทธิภาพ
  • Amazon CloudWatch เพื่อ เข้าถึงและวิเคราะห์ข้อมูลทรัพยากรและแอปพลิเคชันและเอาต์พุตภายนอกโดยใช้เครื่องมือสร้างภาพที่มีประสิทธิภาพบน AWS ในสถานที่และในคลาวด์อื่น ๆ
  • Amazon จัดการ Grafana เพื่อจัดการ Grafana (เครื่องมือตรวจสอบยอดนิยม) อย่างเต็มที่สำหรับการสอบถาม การแสดงภาพ และการแจ้งเตือนเกี่ยวกับเมตริก บันทึก และร่องรอยในข้อมูลการดำเนินงาน
  • Amazon Managed Service สำหรับ Prometheus เพื่อจัดการ Prometheus อย่างเต็มที่ เครื่องมือตรวจสอบคอนเทนเนอร์สำหรับการบำรุงรักษาและสืบค้นเมตริกอนุกรมเวลาจากกลุ่มคอนเทนเนอร์ Kubernetes ที่จัดการด้วยตนเอง

เริ่มต้นด้วยการตรวจสอบและการสังเกตใน AWS โดยการ สร้างบัญชีวัน นี้