AWS 기술 블로그

Category: Generative AI

초개인화 Shopping Agent 만들기: Amazon Bedrock AgentCore Memory와 Custom Memory 활용법

배경 및 현재 쇼핑 에이전트의 한계점 생성형 AI가 상용화되면서 단순한 질답형 챗봇을 넘어 사용자의 과거 경험과 선호도를 기억하는 지능형 에이전트에 대한 관심이 높아지고 있습니다. 특히 이커머스 분야에서는 사용자의 구매 이력, 관심사, 행동 패턴을 기반으로 개인화된 쇼핑 경험을 제공하는 것이 경쟁 우위의 핵심 요소가 되고 있습니다. 현재 시장에 출시된 대부분의 쇼핑 에이전트들은 다음과 같은 한계를 보이고 […]

Amazon Q Developer를 사용하여 애플리케이션 복원력을 향상시키는 방법

이 게시글은 AWS DevOps & Developer Productivity Blog에 게시된 “How to enhance your application resiliency using Amazon Q Developer by Dr. Rahul Sharad Gaikwad” 글을 번역및 편집 하였습니다. “Everything fails, all the time(모든 것은 실패한다, 항상).” – Werner Vogels, Amazon.com CTO 오늘날의 디지털 환경에서 복원력(Resiliency)을 고려한 애플리케이션 설계는 매우 중요합니다. 복원력은 애플리케이션이 장애를 매끄럽게 처리하고, […]

AWS가 제공하는 완전관리형 병렬 파일시스템, Amazon FSx for Lustre – 2

이전 블로그에서는 병렬 파일시스템의 기본 개념과 특징 그리고 대표적인 병렬 파일시스템인 Lustre에 대해 살펴보았습니다. 또한 AWS에서 제공하는 완전 관리형 Lustre 파일시스템인 Amazon FSx for Lustre에 대해서도 알아보았습니다. 병렬 파일시스템은 무엇이고 왜 필요할까? 지구상에서 가장 인기있는 병렬 파일시스템, Lustre 파일시스템 알아보기 AWS가 제공하는 완전 관리형 병렬 파일시스템, Amazon FSx for Lustre – 1 이번 블로그는 시리즈의 […]

자동차 산업을 위한 AWS re:Invent 2024 요약

이 글은 AWS for Industries 블로그에 게시된 글 (AWS re:Invent 2024 recap for the Automotive Industry)를 한국어로 번역 및 편집하였습니다. AWS의 대표적인 연례 컨퍼런스 AWS re:Invent 2024에서, 2024년 12월 2일부터 6일까지 한주 동안 AWS는 기조연설, 브레이크아웃 세션, 신제품 출시, 그리고 다양한 데모를 통하여 최신 혁신과 서비스를 공개하였습니다. 본 요약은 자동차 산업과 관련된 주요 발표 내용, […]

위메이드플레이의 Amazon Bedrock을 사용한 게임 사용자 인터페이스 품질 테스트 자동화 사례

들어가는 글 위메이드플레이는 2009년에 설립된 캐주얼 게임 전문 개발사입니다. 특히 위메이드플레이의 애니팡 시리즈는 누구나 쉽게 즐길 수 있는 모바일 게임으로 1억건 이상의 누적 다운로드를 통해 꾸준히 많은 사랑을 받고 있습니다. 또한 ‘위 베어 베어스 더 퍼즐’과 ‘디즈니 팝 타운’과 같은 글로벌 IP를 활용한 퍼즐 게임들을 통해 글로벌 시장에서도 좋은 성과를 기록하고 있습니다. 매번 새로운 게임 […]

Amazon Bedrock과 Amazon OpenSearch를 활용한 hy 프레딧의 생성형 AI 기반 검색 서비스 구현 여정

에치와이(hy) & Fredit Mall 소개 1969년 창립한 ‘한국 야쿠르트 유업’은 2021년 사명을 에치와이(hy)로 변경하며 유통전문기업으로 도약했습니다. 창립 55주년을 맞은 에치와이는 국민 발효유 ‘야쿠르트’를 시작으로 발효유 시장을 선도해 왔습니다. 건강기능식품 시장에서 꾸준히 성장해온 에치와이는 2020년 12월 자사몰 ‘프레딧'(Fredit)을 론칭하며 온라인 채널을 본격적으로 강화했습니다. 프레딧은 프로바이오틱스 제품뿐 아니라 신선간편식, 건강기능식품, 뷰티, 생활용품 등 다양한 상품을 제공하고 있습니다. […]

생성형 AI 워크로드에 대한 보안 사고 대응 방법 소개

이 글은 AWS Security Blog에 게시된 Methodology for incident response on generative AI workloads by Anna McAbee, Jennifer Paz, AJ Evans, and Steve de Vera를 한국어로 번역 및 편집하였습니다. AWS 고객 사고 대응팀(CIRT)은 생성형 AI 기반 애플리케이션과 관련된 보안 사고를 조사하는데 사용할 수 있는 방법론을 개발했습니다. 생성형 AI 워크로드와 관련된 보안 이벤트라고 하더라도, 여전히 AWS […]

이미지 비디오 Multi-modal 추론 모델, LLaVA-NeXT-Video 모델을 Amazon SageMaker에 배포하기

LLaVA-NeXT-Video 모델 소개 LLaVA-NeXT-Video 모델은 LLaVA-NeXT의 후속 모델로, 비디오 이해 능력을 강화한 대형 멀티모달 모델 (Large Multimodal Model, LMM)입니다. 이 모델은 주로 텍스트-이미지 데이터로 학습된 LLaVA-NeXT를 기반으로 하여 비디오 데이터에 대한 성능을 향상시키기 위해 개발되었습니다. 주요 특징 제로샷(Zero-shot) 비디오 표현 능력: LLaVA-NeXT-Video는 AnyRes 기술을 활용하여 고해상도 이미지를 여러 이미지로 분할하고, 이를 사전 학습된 비전 트랜스포머 […]

Amazon Bedrock과 OpenSearch를 활용한 Multimodal RAG 기반 상품 검색 챗봇

이 글에서는 Multimodal LLM과 Multimodal Embedding을 활용하여 Multimodal RAG를 구현하는 몇 가지 방법을 제안하고, 하나의 예시 애플리케이션으로 패션 상품 검색을 위한 챗봇 구현 방안을 소개합니다. 주요 기술 개념 검색 증강 생성 (Retrieval-Augmented Generation, RAG) 대규모 언어 모델 (Large Language Model, LLM)이 응답을 생성하기 전에, 외부 지식 소스를 참조하여 보다 정확하고 풍부한 답변을 생성하도록 개발된 기술입니다. […]

[그림 1.] Langfuse를 AWS ECS Fargate에 배포한 아키텍처

Amazon ECS와 AWS Fargate를 사용하여 AWS CDK Python으로 Langfuse 호스팅하기

인공지능, 특히 대형 언어 모델(LLM)의 개발 및 배포 분야에서 Langfuse는 혁신적인 플랫폼으로 부상하고 있습니다. Langfuse는 개발팀이 공동으로 LLM 애플리케이션을 디버깅하고, 분석하며, 반복 개선을 할 수 있도록 도와주는 오픈 소스 LLM 엔지니어링 플랫폼입니다. 이 블로그 포스팅에서는 AWS Cloud Development Kit (CDK)를 활용하여 Amazon Elastic Container Registry (ECR) 및 Amazon Elastic Container Service (ECS)와 AWS Fargate를 사용하여 […]