AWS 기술 블로그

Category: Amazon SageMaker

생성형 AI를 위한 Amazon SageMaker Endpoint 기반 임베딩 모델 배포

서론 생성형 AI의 기술이 하루가 다르게 발전하고 있으며, 그 접근법 또한 다양해지고 있습니다. 그 중, RAG(Retrieval Augmented Generation, 검색 증강 생성) 접근은 도메인의 문제를 효율적으로 풀기 위한 접근법으로, 생성형 AI의 필수적인 접근 중 하나가 되었습니다. RAG를 활용하는 데에는 여러 방법이 있지만, 가장 널리 사용되는 방법은 임베딩을 사용한 유사도 검색에 기반을 두고 있습니다. 이 접근법은 텍스트를 […]

Amazon Bedrock으로 그래프 RAG 구현하기

개요 대규모 언어 모델들은 방대한 데이터를 기반으로 광범위한 지식과 우수한 문장 생성 능력을 갖추고 있습니다. 그러나 이러한 모델들은 학습 시점 이후의 최신 정보나 특정 주제에 대한 심층 지식을 반영하는 데 한계가 있으며, 때때로 환각(hallucination) 문제로 답변의 정확성을 떨어뜨리기도 합니다. 이러한 문제를 해결하기 위해, RAG(Retrieval Augmented Generation) 프레임워크가 등장했습니다. RAG는 필요한 정보를 자체 데이터베이스에 저장하고 검색해, […]

AWS AI 서비스를 활용한 미디어 자막 성능 개선 및 컨텐츠 현지화 방법

미디어에서 자막은 단순히 대사만을 전달하는 것이 아니라, 영상 속에서 일어나는 다양한 소리들(배경음, 음향 효과 등)도 설명해주기 때문에 영상의 내용을 이해하는 데 중요한 역할을 합니다. 자막의 대표적 종류인 폐쇄자막(Closed Caption)은 주로 청각 장애인을 위한 자막 서비스로 사용되어 모든 사람들이 접할 수 있게 되었습니다. 또한 자막을 통해  ‘오징어게임’, ‘더 글로리’와 같은 국내 미디어 컨텐츠의 세계화를 이룰 수 […]

KT, Amazon SageMaker를 이용한 ViT 기반 Food Tag 모델의 학습 시간 단축 여정

KT의 ‘AI Food Tag’는 사진 속 음식의 종류와 영양 성분을 알려 주는 인공지능(AI) 기반 식이 관리 솔루션입니다. KT가 개발한 Vision 모델은 레이블(Label)이 없는 대용량 이미지 데이터로 학습한 사전 학습 모델이 적용되어,  다양한 음식들의 영양 성분과 칼로리 정보를 분석하여 당뇨 등 만성질환 환자의 식단 관리에 도움을 줄 수 있습니다. 이러한 ‘AI Food Tag’ 모델의 학습 성능 […]

VARCO LLM과 Amazon OpenSearch를 이용하여 한국어 Chatbot 만들기

VARCO LLM은 엔씨소프트(NC SOFT)에서 제공하는 대용량 언어 모델(LLM)입니다. VARCO LLM KO-13B-IST는 VARCO LLM KO-13B-FM의 파인 튜닝(Fine Tuning) 모델로서 Question and Answering, Summarization등 다양한 태스크에 활용할 수 있으며, Amazon SageMaker를 이용하여 쉽게 배포하여 사용할 수 있습니다. 또한, 대규모 언어 모델(LLM)은 사전학습(Pre-train)을 통해 많은 경우에 좋은 답변을 할 수 있지만, 학습에 포함되지 않은 특정 영역(domain specific)에 대한 질문에 […]

Amazon Aurora를 어플리케이션 개발자가 사용하기 위한 10가지 팁 – 2부

이 글은 AWS Database Delivery Blog에 게시된 10 Amazon Aurora tips for application developers – Part 2 by Rajeev Sakhuja을 한국어 번역 및 편집하였습니다. 이 글은 Amazon Aurora를 어플리케이션 개발자가 사용하기 위한 10가지 팁 (10 Amazon Aurora tips for application developers) 게시물의 2부작 시리즈의 두번째 게시물 입니다. 1부에서는 10가지 팁중 처음 5가지 팁을 공유 했습니다. […]

롯데ON 사례로 본 개인화 추천 시스템 구축하기, 2부 : Amazon SageMaker를 활용한 MLOps 구성 및 추천 모델 실시간 서비스

롯데ON은 단순 상품판매 뿐만 아닌 상품에 대한 경험을 함께 제공할 수 있는 플랫폼을 목표로 서비스하고 있습니다. 패션, 뷰티, 럭셔리, 키즈 등 다양한 전문관을 운영하며 고객들이 선호하는 라이프 스타일 전반에 걸쳐 쇼핑에 관한 좋은 경험을 제공해 드릴 수 있도록 노력하고 있습니다. 롯데ON의 고객 쇼핑 경험을 높이기 위해, 추천플랫폼개발팀에서는 고객이 찾고 있는 상품이나 흥미를 느낄 만한 상품을 […]

롯데ON 사례로 본 개인화 추천 시스템 구축하기, 1부 : Dynamic A/B Testing 아키텍처 구축

롯데ON은 풍부한 오프라인 쇼핑 인프라, 온라인 쇼핑 노하우로 세상에 없던 새로운 쇼핑 경험을 제공하는 온라인 쇼핑 플랫폼으로 발전하고 있습니다. 단순히 상품을 판매하는 플랫폼이 아닌 상품에 대한 경험을 제공할 수 있는 플랫폼을 목표로 고객이 원하고 만족하는 서비스를 만들기 위해 노력하고 있습니다. 롯데ON은 메인페이지, 상품상세, 검색, 장바구니, 주문완료 페이지에 이르는 롯데ON 고객의 여정 전반에 걸쳐 다양한 형태의 […]

Amazon SageMaker JumpStart와 Vector Store를 이용하여 Llama 2로 Chatbot 만들기

Llama 2의 대규모 언어 모델(Large Language Models)을 이용하여 질문/답변(Question/Answering)을 수행하는 chatbot을 vector store를 이용하여 구현합니다. 대량의 데이터로 사전학습(pretrained)한 대규모 언어 모델(LLM)은 학습되지 않은 질문에 대해서도 가장 가까운 답변을 맥락(context)에 맞게 찾아 답변할 수 있습니다. 이는 기존의 Rule 방식보다 훨씬 정답에 가까운 답변을 제공하지만, 때로는 매우 그럴듯한 잘못된 답변(hallucination)을 할 수 있습니다. 이런 경우에 파인 튜닝(fine tuning)을 통해 […]

Amazon SageMaker JumpStart를 이용하여 Falcon Foundation Model기반의 Chatbot 만들기

2023년 6월부터 AWS 서울 리전에서 EC2 G5인스턴스를 사용할 수 있게 되었습니다. 여기서는 Falcon Foundation Model을 Amazon SageMaker JumpStart를 이용해 AWS 서울 리전의 EC2 G5에 설치하고, 웹 브라우저 기반의 Chatbot을 생성하는 방법에 대해 설명합니다. Falcon FM은 HuggingFace의 Open LLM Leaderboard에서 상위권(2023년 7월 기준)에 위치할 만큼 우수한 성능을 가지고 있으면서도, 아파치 2.0 라이선스 정책에 따라 상용을 포함하여 누구나 자유롭게 사용할 […]