- 分析›
- AWS Clean Rooms›
- 特徴
AWS Clean Rooms の特徴
数分でクリーンルームを作成できます。未加工データを共有せずにパートナーとコラボレーションできます。
なぜ AWS Clean Rooms を使うのですか?
わずかなステップで、独自のクリーンルームを作成し、参加者を追加して、コラボレーションを開始
基礎となるデータを共有したり公開したりすることなく、あらゆる企業とコラボレーションすることが可能
クリーンルームのプライバシーを強化するさまざまな制御により、基礎となるデータを保護します
顧客レコードのリンクと照合、柔軟な分析ツールの使用、パートナーとの ML モデルのトレーニングとデプロイが可能
ページトピック
マルチパーティー
すべて開くデータが存在する場所でのコラボレーション
すべて開く完全にプログラム化されたアクセス
すべて開く設定可能なロール
すべて開くAWS Clean Rooms での AWS Entity Resolution
すべて開くPySpark
すべて開くフレキシブル SQL
すべて開く分析ルールは、データの分析方法を制御するための制限です。指定されたクエリ実行者としてコラボレーションを作成または参加するコラボレーションメンバーは、設定した分析ルールに従ってデータテーブルを交差させて分析するクエリを記述できます。AWS Clean Rooms は、集計、リスト、カスタムの 3 種類の分析ルールをサポートします。
集計分析ルール: 集計分析ルールを使用すると、2 つのデータセットの共通部分の大きさなど、集計統計を生成するクエリを実行できます。集計分析ルールを使用すると、データに対して集計クエリのみを実行できるようにしたり、実行するクエリの特定の部分 (ブラインドマッチでのみ使用しなければならない列や、合計、カウント、平均などの集計で使用できる列など) に制限を適用することができます。また、出力の最小集計制約も制御します。 集計の最小制限を設定して、出力行の戻り値に条件を設定することもできます。この制限は、COUNT DISTINCT (列) >= しきい値、の形式を取ります。クエリ結果の出力行がいずれの制約も満たさない場合、その行は結果セットから削除されます。これを使えば、データコラボレーターに、任意のクエリを柔軟に記述することを可能にしながら、確実に最小集計しきい値を自動的に適用するのに役立ちます。
リスト分析ルール: リスト分析ルールを使用すると、2 つのデータセットの重複など、複数のデータセットの共通部分の行レベルのリストを抽出するクエリを実行できます。リスト分析ルールを使用すると、データに対してリストクエリのみを実行できるようにしたり、ブラインドマッチでのみ使用する必要がある列や、出力でリストとして出力できる列など、実行するクエリを制限したりできます。
カスタム分析ルール: カスタム分析ルールでは、共通テーブル式 (CTE) やウィンドウ関数など、ANSI 標準 SQL のほとんどを使用してカスタムクエリを作成できます。また、コラボレーションパートナーが実行する前にクエリを確認して許可したり、他のコラボレーターのクエリを自身のテーブルで実行する前に確認したりすることもできます。カスタム分析ルールを使用すると、分析が完了した後にクエリログに頼る必要がなくなり、組み込みコントロールを使用して基になるデータを分析する方法を事前に決定または制限できます。カスタム SQL クエリを使用する場合、分析テンプレートを作成または使用して、コラボレーション内のパラメーターを含むカスタムクエリを保存することもできます。これにより、顧客はコラボレーションにおいてより簡単に互いに助け合うことができます。例えば、SQL の経験が豊富なメンバーは、他のメンバーが確認して実行できるようにテンプレートを作成できます。また、コラボレーションでの再利用可能な分析も容易になります。カスタム分析ルールを選択し、差分プライバシーパラメータを設定することで、AWS Clean Rooms Differential Privacy を使用することもできます。
AWS Clean Rooms のクエリは、暗号で保護されたデータに実行することができます。機密データの暗号化を要求するデータ処理方針が社内で施行されている場合、クエリの実行中でもデータが暗号化されるように、コラボレーション固有の、共有暗号化キーを使うことでデータを事前に暗号化することができます。暗号コンピューティングは、コラボレーションの計算に使用されたデータを、保管中、転送中、使用中 (処理中) も暗号化された状態に保ちます。
Cryptographic Computing for Clean Rooms (C3R) は、オープンソースの Java SDK と CLI のことで、GitHub で公開されています。この機能は追加料金なしでご利用いただけます。ビッグデータをお持ちの場合は、ドキュメントを見ると、C3R を Apache Spark に統合する方法を確認できます。
この機能は、AWS が提供する柔軟性、スケーラビリティ、パフォーマンス、使いやすさを活用しながら、お客様のセキュリティやコンプライアンスのニーズを満たすために構築された、幅広い AWS 暗号コンピューティングツールの最新版です。
プライバシーを強化する ML
すべて開くAWS Clean Rooms ML により、お客様とパートナーがプライバシー強化機械学習 (ML) を適用して、互いに未加工データを共有せずに予測的なインサイトを生成できるようになります。AWS Clean Rooms ML は、カスタムおよびルックアライクの機械学習 (ML) モデリングをサポートしています。カスタムモデリングを使用すると、基礎となるデータや知的財産を共同作業者間で共有することなく、トレーニング用のカスタムモデルを持ち込み、集合データセットに対して推論を実行できます。ルックアライクモデリングでは、AWS が作成したモデルを使用して、パートナーがコラボレーションに持ち込む少量のプロファイルサンプルに基づいて、類似のプロファイルの拡張セットを生成できます。
AWS Clean Rooms ML は、複数のユースケースでお客様をサポートします。例えば、広告主は独自のモデルとデータを Clean Rooms のコラボレーションに持ち込み、パブリッシャーに自社のデータを組み合わせて、キャンペーンの効果を高めるカスタム ML モデルのトレーニングとデプロイを依頼します。金融機関は、過去の取引記録を使用してカスタム ML モデルをトレーニングしたり、不正の可能性のある取引を検出するために Clean Rooms のコラボレーションにパートナーを招待したりできます。研究機関や病院ネットワークは、臨床試験を加速させるために、既存の臨床試験参加者に似た候補者を見つけることができます。ブランドとパブリッシャーは、市場内の顧客の類似セグメントをモデル化し、関連性の高い広告エクスペリエンスを提供することができ、どちらの企業も基盤となるデータを他方と共有する必要はありません。
AWS が作成したモデルを使用する AWS Clean Rooms ML のルックアライクモデリングは、e コマースやストリーミング動画などのさまざまなデータセットで構築され、テストされており、類似モデリングの精度を、代表的な業界ベースラインと比較して最大 36% 向上させることができます。新規顧客のプロスペクティング活動などの実際の適用場面では、この精度の改善は、数百万 USD のコスト削減につながります。
AWS Clean Rooms では、お客様とパートナーが集合データから合成データセットを生成して、リグレッションおよび分類用の機械学習 (ML) モデルをトレーニングできます。AWS Clean Rooms ML はプライバシーを強化するコントロールを適用して、予測インサイトを生成しながら所有データと機械学習モデルを保護します。プライバシーを強化するコントロールとして、合成データセットの生成により、お客様とパートナーは元のデータセットと同様の統計的特性を持つトレーニングデータセットを作成できます。これにより、以前はデータプライバシーの問題によって制限されていた集合データセットの新しい機械学習モデルトレーニングのユースケースの扉が開きます。
AWS Clean Rooms ML でのカスタム機械学習のためのプライバシーを強化する合成データセットの生成は、元のデータ内の主題 (データが収集された個人や団体など) を匿名化することで行います。これにより、モデルがデータセット内の個人に関する情報を記憶するリスクを軽減します。合成データセットの生成プロセスは、希望するリグレッションアルゴリズムおよび分類アルゴリズムと互換性のあるデータセットを作成するように最適化されています。