Apache Spark on Amazon EMR
Why Apache Spark on EMR?
Amazon EMR is the best place to run Apache Spark. You can quickly and easily create managed Spark clusters from the AWS Management Console, AWS CLI, or the Amazon EMR API. Additionally, you can leverage additional Amazon EMR features, including fast Amazon S3 connectivity using the Amazon EMR File System (EMRFS), integration with the Amazon EC2 Spot market and the AWS Glue Data Catalog, and EMR Managed Scaling to add or remove instances from your cluster. AWS Lake Formation brings fine-grained access control, while integration with AWS Step Functions helps with orchestrating your data pipelines. EMR Studio (preview) is an integrated development environment (IDE) that makes it easy for data scientists and data engineers to develop, visualize, and debug data engineering and data science applications written in R, Python, Scala, and PySpark. EMR Studio provides fully managed Jupyter Notebooks, and tools like Spark UI and YARN Timeline Service to simplify debugging. EMR Notebooks make it easy for you to experiment and build applications with Spark. If you prefer, you can use Apache Zeppelin to create interactive and collaborative notebooks for data exploration using Spark.
Features and benefits
Use cases
Customer success
Yelp

The Washington Post

Krux

GumGum

Hearst Corporation

CrowdStrike
