Artificial Intelligence
Tag: Amazon SageMaker
Train and host Scikit-Learn models in Amazon SageMaker by building a Scikit Docker container
Introduced at re:Invent 2017, Amazon SageMaker provides a serverless data science environment to build, train, and deploy machine learning models at scale. Customers also have the ability to work with frameworks they find most familiar, such as Scikit learn. In this blog post, we’ll accomplish two goals: First, we’ll give you a high-level overview of […]
Amazon SageMaker support for TensorFlow 1.5, MXNet 1.0, and CUDA 9
Amazon SageMaker pre-built deep learning framework containers now support TensorFlow 1.5 and Apache MXNet 1.0, both of which take advantage of CUDA 9 optimizations for faster performance on SageMaker ml.p3 instances. In addition to performance benefits, this provides access to updated features such as Eager execution in TensorFlow and advanced indexing for NDArrays in MXNet. More […]
Build an online compound solubility prediction workflow with AWS Batch and Amazon SageMaker
Machine learning (ML) methods for the field of computational chemistry are growing at an accelerated rate. Easy access to open-source solvers (such as TensorFlow and Apache MXNet), toolkits (such as RDKit cheminformatics software), and open-scientific initiatives (such as DeepChem) makes it easy to use these frameworks in daily research. In the field of chemical informatics, many […]
Build your own object classification model in SageMaker and import it to DeepLens
April 2023 Update: Starting January 31, 2024, you will no longer be able to access AWS DeepLens through the AWS management console, manage DeepLens devices, or access any projects you have created. To learn more, refer to these frequently asked questions about AWS DeepLens end of life. We are excited to launch a new feature for […]
Amazon SageMaker BlazingText: Parallelizing Word2Vec on Multiple CPUs or GPUs
Today we’re launching Amazon SageMaker BlazingText as the latest built-in algorithm for Amazon SageMaker. BlazingText is an unsupervised learning algorithm for generating Word2Vec embeddings. These are dense vector representations of words in large corpora. We’re excited to make BlazingText, the fastest implementation of Word2Vec, available to Amazon SageMaker users on: Single CPU instances (like the […]
AWS KMS-based Encryption Is Now Available for Training and Hosting in Amazon SageMaker
Amazon SageMaker uses throwaway keys, also called transient keys, to encrypt the ML General Purpose storage volumes attached to training and hosting EC2 instances. Because these keys are used only to encrypt the ML storage volumes and are then immediately discarded, the volumes can safely be used to store confidential data. Volumes can be accessed […]
Making neural nets uncool again – AWS style
Just as the goal of Amazon AI is to democratize machine learning with the development of platforms such as Amazon SageMaker, the goal of fast.ai is to level the educational playing field so that anyone can pick up machine learning and be productive. The fast.ai tagline is “Making neural nets uncool again.” This is not a play to decrease the popularity of deep neural networks, but instead to broaden their appeal and accessibility beyond the academic elites who have dominated the research in this area.
Now available in Amazon SageMaker: DeepAR algorithm for more accurate time series forecasting
Today we are launching Amazon SageMaker DeepAR as the latest built-in algorithm for Amazon SageMaker. DeepAR is a supervised learning algorithm for time series forecasting that uses recurrent neural networks (RNN) to produce both point and probabilistic forecasts. We’re excited to give developers access to this scalable, highly accurate forecasting algorithm that drives mission-critical decisions within Amazon. Just as […]
Build Amazon SageMaker notebooks backed by Spark in Amazon EMR
This blog post was last reviewed August, 2022. Introduced at AWS re:Invent in 2017, Amazon SageMaker provides a fully managed service for data science and machine learning workflows. One of the important parts of Amazon SageMaker is the powerful Jupyter notebook interface, which can be used to build models. You can enhance the Amazon SageMaker […]