Artificial Intelligence

Category: Advanced (300)

How Amazon Search reduced ML inference costs by 85% with AWS Inferentia

Amazon’s product search engine indexes billions of products, serves hundreds of millions of customers worldwide, and is one of the most heavily used services in the world. The Amazon Search team develops machine learning (ML) technology that powers the Amazon.com search engine and helps customers search effortlessly. To deliver a great customer experience and operate […]

Improve transcription accuracy of customer-agent calls with custom vocabulary in Amazon Transcribe

Many AWS customers have been successfully using Amazon Transcribe to accurately, efficiently, and automatically convert their customer audio conversations to text, and extract actionable insights from them. These insights can help you continuously enhance the processes and products that directly improve the quality and experience for your customers. In many countries, such as India, English […]

Create a batch recommendation pipeline using Amazon Personalize with no code

With personalized content more likely to drive customer engagement, businesses continuously seek to provide tailored content based on their customer’s profile and behavior. Recommendation systems in particular seek to predict the preference an end-user would give to an item. Some common use cases include product recommendations on online retail stores, personalizing newsletters, generating music playlist […]

Image shows a high-level solution architecture for the phases of intelligent document processing (IDP) as it relates to the stages of a mortgage application.

Process mortgage documents with intelligent document processing using Amazon Textract and Amazon Comprehend

Organizations in the lending and mortgage industry process thousands of documents on a daily basis. From a new mortgage application to mortgage refinance, these business processes involve hundreds of documents per application. There is limited automation available today to process and extract information from all the documents, especially due to varying formats and layouts. Due […]

Build a multi-lingual document translation workflow with domain-specific and language-specific customization

In the digital world, providing information in a local language isn’t novel, but it can be a tedious and expensive task. Advancements in machine learning (ML) and natural language processing (NLP) have made this task much easier and less expensive. We have seen increased adoption of ML for multi-lingual data and document processing workloads. Enterprise […]

Intelligent document processing with AWS AI services: Part 2

Amazon’s intelligent document processing (IDP) helps you speed up your business decision cycles and reduce costs. Across multiple industries, customers need to process millions of documents per year in the course of their business. For customers who process millions of documents, this is a critical aspect for the end-user experience and a top digital transformation […]

Intelligent document processing with AWS AI services: Part 1

Organizations across industries such as healthcare, finance and lending, legal, retail, and manufacturing often have to deal with a lot of documents in their day-to-day business processes. These documents contain critical information that are key to making decisions on time in order to maintain the highest levels of customer satisfaction, faster customer onboarding, and lower […]

AWS architecture

Scale YOLOv5 inference with Amazon SageMaker endpoints and AWS Lambda

After data scientists carefully come up with a satisfying machine learning (ML) model, the model must be deployed to be easily accessible for inference by other members of the organization. However, deploying models at scale with optimized cost and compute efficiencies can be a daunting and cumbersome task. Amazon SageMaker endpoints provide an easily scalable […]

Feature Group Update workflow

Simplify iterative machine learning model development by adding features to existing feature groups in Amazon SageMaker Feature Store

Feature engineering is one of the most challenging aspects of the machine learning (ML) lifecycle and a phase where the most amount of time is spent—data scientists and ML engineers spend 60–70% of their time on feature engineering. AWS introduced Amazon SageMaker Feature Store during AWS re:Invent 2020, which is a purpose-built, fully managed, centralized […]

Build and train ML models using a data mesh architecture on AWS: Part 2

This is the second part of a series that showcases the machine learning (ML) lifecycle with a data mesh design pattern for a large enterprise with multiple lines of business (LOBs) and a Center of Excellence (CoE) for analytics and ML. In part 1, we addressed the data steward persona and showcased a data mesh […]