Artificial Intelligence

Category: Advanced (300)

Use machine learning to detect anomalies and predict downtime with Amazon Timestream and Amazon Lookout for Equipment

The last decade of the Industry 4.0 revolution has shown the value and importance of machine learning (ML) across verticals and environments, with more impact on manufacturing than possibly any other application. Organizations implementing a more automated, reliable, and cost-effective Operational Technology (OT) strategy have led the way, recognizing the benefits of ML in predicting […]

­­Speed ML development using SageMaker Feature Store and Apache Iceberg offline store compaction

Today, companies are establishing feature stores to provide a central repository to scale ML development across business units and data science teams. As feature data grows in size and complexity, data scientists need to be able to efficiently query these feature stores to extract datasets for experimentation, model training, and batch scoring. Amazon SageMaker Feature […]

Power recommendations and search using an IMDb knowledge graph – Part 2

This three-part series demonstrates how to use graph neural networks (GNNs) and Amazon Neptune to generate movie recommendations using the IMDb and Box Office Mojo Movies/TV/OTT licensable data package, which provides a wide range of entertainment metadata, including over 1 billion user ratings; credits for more than 11 million cast and crew members; 9 million […]

Power recommendation and search using an IMDb knowledge graph – Part 1

The IMDb and Box Office Mojo Movies/TV/OTT licensable data package provides a wide range of entertainment metadata, including over 1 billion user ratings; credits for more than 11 million cast and crew members; 9 million movie, TV, and entertainment titles; and global box office reporting data from more than 60 countries. Many AWS media and […]

Automatically retrain neural networks with Renate

Today we announce the general availability of Renate, an open-source Python library for automatic model retraining. The library provides continual learning algorithms able to incrementally train a neural network as more data becomes available. By open-sourcing Renate, we would like to create a venue where practitioners working on real-world machine learning systems and researchers interested […]

How to evaluate the quality of the synthetic data – measuring from the perspective of fidelity, utility, and privacy

In an increasingly data-centric world, enterprises must focus on gathering both valuable physical information and generating the information that they need but can’t easily capture. Data access, regulation, and compliance are an increasing source of friction for innovation in analytics and artificial intelligence (AI). For highly regulated sectors such as Financial Services, Healthcare, Life Sciences, […]

Introducing Amazon SageMaker Data Wrangler’s new embedded visualizations

Manually inspecting data quality and cleaning data is a painful and time-consuming process that can take a huge chunk of a data scientist’s time on a project. According to a 2020 survey of data scientists conducted by Anaconda, data scientists spend approximately 66% of their time on data preparation and analysis tasks, including loading (19%), cleaning (26%), […]

Damage assessment using Amazon SageMaker geospatial capabilities and custom SageMaker models

In this post, we show how to train, deploy, and predict natural disaster damage with Amazon SageMaker with geospatial capabilities. We use the new SageMaker geospatial capabilities to generate new inference data to test the model. Many government and humanitarian organizations need quick and accurate situational awareness when a disaster strikes. Knowing the severity, cause, […]

Deploy Amazon SageMaker Autopilot models to serverless inference endpoints

Amazon SageMaker Autopilot automatically builds, trains, and tunes the best machine learning (ML) models based on your data, while allowing you to maintain full control and visibility. Autopilot can also deploy trained models to real-time inference endpoints automatically. If you have workloads with spiky or unpredictable traffic patterns that can tolerate cold starts, then deploying […]

Improve scalability for Amazon Rekognition stateless APIs using multiple regions

In previous blog post, we described an end-to-end identity verification solution in a single AWS Region. The solution uses the Amazon Rekognition APIs DetectFaces for face detection and CompareFaces for face comparison. We think of those APIs as stateless APIs because they don’t depend on an Amazon Rekognition face collection. They’re also idempotent, meaning repeated […]