Artificial Intelligence

Category: Advanced (300)

Build custom code libraries for your Amazon SageMaker Data Wrangler Flows using AWS Code Commit

As organizations grow in size and scale, the complexities of running workloads increase, and the need to develop and operationalize processes and workflows becomes critical. Therefore, organizations have adopted technology best practices, including microservice architecture, MLOps, DevOps, and more, to improve delivery time, reduce defects, and increase employee productivity. This post introduces a best practice […]

Few-click segmentation mask labeling in Amazon SageMaker Ground Truth Plus

Amazon SageMaker Ground Truth Plus is a managed data labeling service that makes it easy to label data for machine learning (ML) applications. One common use case is semantic segmentation, which is a computer vision ML technique that involves assigning class labels to individual pixels in an image. For example, in video frames captured by […]

Accelerate time to insight with Amazon SageMaker Data Wrangler and the power of Apache Hive

Amazon SageMaker Data Wrangler reduces the time it takes to aggregate and prepare data for machine learning (ML) from weeks to minutes in Amazon SageMaker Studio. Data Wrangler enables you to access data from a wide variety of popular sources (Amazon S3, Amazon Athena, Amazon Redshift, Amazon EMR and Snowflake) and over 40 other third-party sources. […]

Use a data-centric approach to minimize the amount of data required to train Amazon SageMaker models

As machine learning (ML) models have improved, data scientists, ML engineers and researchers have shifted more of their attention to defining and bettering data quality. This has led to the emergence of a data-centric approach to ML and various techniques to improve model performance by focusing on data requirements. Applying these techniques allows ML practitioners […]

Use Snowflake as a data source to train ML models with Amazon SageMaker

May 2023: This blog post has been updated to include a workflow that does not require building a custom container. Amazon SageMaker is a fully managed machine learning (ML) service. With SageMaker, data scientists and developers can quickly and easily build and train ML models, and then directly deploy them into a production-ready hosted environment. […]

Portfolio optimization through multidimensional action optimization using Amazon SageMaker RL

Reinforcement learning (RL) encompasses a class of machine learning (ML) techniques that can be used to solve sequential decision-making problems. RL techniques have found widespread applications in numerous domains, including financial services, autonomous navigation, industrial control, and e-commerce. The objective of an RL problem is to train an agent that, given an observation from its […]

Hosting YOLOv8 PyTorch models on Amazon SageMaker Endpoints

Deploying models at scale can be a cumbersome task for many data scientists and machine learning engineers. However, Amazon SageMaker endpoints provide a simple solution for deploying and scaling your machine learning (ML) model inferences. Our last blog post and GitHub repo on hosting a YOLOv5 TensorFlowModel on Amazon SageMaker Endpoints sparked a lot of interest […]

Four approaches to manage Python packages in Amazon SageMaker Studio notebooks

This post presents and compares options and recommended practices on how to manage Python packages and virtual environments in Amazon SageMaker Studio notebooks. A public GitHub repo provides hands-on examples for each of the presented approaches. Amazon SageMaker Studio is a web-based, integrated development environment (IDE) for machine learning (ML) that lets you build, train, […]

solution architecture

AI/ML-driven actionable insights and themes for Amazon third-party sellers using AWS

The Amazon International Seller Growth (ISG) team runs the CSBA (Customer Service by Amazon) program that supports over 200,000 third-party Merchant Fulfilled Network (MFN) sellers. Amazon call centers facilitate hundreds of thousands of phone calls, chats, and emails going between the consumers and Amazon MFN sellers. The large volume of contacts creates a challenge for […]

Achieve rapid time-to-value business outcomes with faster ML model training using Amazon SageMaker Canvas

Machine learning (ML) can help companies make better business decisions through advanced analytics. Companies across industries apply ML to use cases such as predicting customer churn, demand forecasting, credit scoring, predicting late shipments, and improving manufacturing quality. In this blog post, we’ll look at how Amazon SageMaker Canvas delivers faster and more accurate model training times enabling […]