AWS Machine Learning Blog

Category: Amazon Machine Learning

Example of an overlay add in the lower third of a video player

Automate video insights for contextual advertising using Amazon Bedrock Data Automation

Amazon Bedrock Data Automation (BDA) is a new managed feature powered by FMs in Amazon Bedrock. BDA extracts structured outputs from unstructured content—including documents, images, video, and audio—while alleviating the need for complex custom workflows. In this post, we demonstrate how BDA automatically extracts rich video insights such as chapter segments and audio segments, detects text in scenes, and classifies Interactive Advertising Bureau (IAB) taxonomies, and then uses these insights to build a nonlinear ads solution to enhance contextual advertising effectiveness.

Architecture Diagram

Automate Amazon EKS troubleshooting using an Amazon Bedrock agentic workflow

In this post, we demonstrate how to orchestrate multiple Amazon Bedrock agents to create a sophisticated Amazon EKS troubleshooting system. By enabling collaboration between specialized agents—deriving insights from K8sGPT and performing actions through the ArgoCD framework—you can build a comprehensive automation that identifies, analyzes, and resolves cluster issues with minimal human intervention.

Build a computer vision-based asset inventory application with low or no training

In this post, we present a solution using generative AI and large language models (LLMs) to alleviate the time-consuming and labor-intensive tasks required to build a computer vision application, enabling you to immediately start taking pictures of your asset labels and extract the necessary information to update the inventory using AWS services

Solution Overview

Clario enhances the quality of the clinical trial documentation process with Amazon Bedrock

The collaboration between Clario and AWS demonstrated the potential of AWS AI and machine learning (AI/ML) services and generative AI models, such as Anthropic’s Claude, to streamline document generation processes in the life sciences industry and, specifically, for complicated clinical trial processes.

full view of the Supervisor Agent with its sub-agents

Build multi-agent systems with LangGraph and Amazon Bedrock

This post demonstrates how to integrate open-source multi-agent framework, LangGraph, with Amazon Bedrock. It explains how to use LangGraph and Amazon Bedrock to build powerful, interactive multi-agent applications that use graph-based orchestration.

How TransPerfect Improved Translation Quality and Efficiency Using Amazon Bedrock

This post describes how the AWS Customer Channel Technology – Localization Team worked with TransPerfect to integrate Amazon Bedrock into the GlobalLink translation management system, a cloud-based solution designed to help organizations manage their multilingual content and translation workflows. Organizations use TransPerfect’s solution to rapidly create and deploy content at scale in multiple languages using AI.

Reduce ML training costs with Amazon SageMaker HyperPod

In this post, we explore the challenges of large-scale frontier model training, focusing on hardware failures and the benefits of Amazon SageMaker HyperPod – a solution that minimizes disruptions, enhances efficiency, and reduces training costs.

Model customization, RAG, or both: A case study with Amazon Nova

The introduction of Amazon Nova models represent a significant advancement in the field of AI, offering new opportunities for large language model (LLM) optimization. In this post, we demonstrate how to effectively perform model customization and RAG with Amazon Nova models as a baseline. We conducted a comprehensive comparison study between model customization and RAG using the latest Amazon Nova models, and share these valuable insights.

Workflow Diagram: 1. Import your user, item, and interaction data into Amazon Personalize. 2. Train an Amazon Personalize “Top pics for you” recommender. 3. Get the top recommended movies for each user. 4. Use a prompt template, the recommended movies, and the user demographics to generate the model prompt. 5. Use Amazon Bedrock LLMs to generate personalized outbound communication with the prompt. 6. Share the personalize outbound communication with each of your users.

Generate user-personalized communication with Amazon Personalize and Amazon Bedrock

In this post, we demonstrate how to use Amazon Personalize and Amazon Bedrock to generate personalized outreach emails for individual users using a video-on-demand use case. This concept can be applied to other domains, such as compelling customer experiences for ecommerce and digital marketing use cases.