Artificial Intelligence

Category: AWS Step Functions

Build a proactive AI cost management system for Amazon Bedrock – Part 2

In this post, we explore advanced cost monitoring strategies for Amazon Bedrock deployments, introducing granular custom tagging approaches for precise cost allocation and comprehensive reporting mechanisms that build upon the proactive cost management foundation established in Part 1. The solution demonstrates how to implement invocation-level tagging, application inference profiles, and integration with AWS Cost Explorer to create a complete 360-degree view of generative AI usage and expenses.

Build a proactive AI cost management system for Amazon Bedrock – Part 1

In this post, we introduce a comprehensive solution for proactively managing Amazon Bedrock inference costs through a cost sentry mechanism designed to establish and enforce token usage limits, providing organizations with a robust framework for controlling generative AI expenses. The solution uses serverless workflows and native Amazon Bedrock integration to deliver a predictable, cost-effective approach that aligns with organizational financial constraints while preventing runaway costs through leading indicators and real-time budget enforcement.

AWS Step Functions orchestrating security checks, data tokenization, and Bedrock model invocation in sequential order

Integrate tokenization with Amazon Bedrock Guardrails for secure data handling

In this post, we show you how to integrate Amazon Bedrock Guardrails with third-party tokenization services to protect sensitive data while maintaining data reversibility. By combining these technologies, organizations can implement stronger privacy controls while preserving the functionality of their generative AI applications and related systems.

Slide presentation showing an example output

Automate the creation of handout notes using Amazon Bedrock Data Automation

In this post, we show how you can build an automated, serverless solution to transform webinar recordings into comprehensive handouts using Amazon Bedrock Data Automation for video analysis. We walk you through the implementation of Amazon Bedrock Data Automation to transcribe and detect slide changes, as well as the use of Amazon Bedrock foundation models (FMs) for transcription refinement, combined with custom AWS Lambda functions orchestrated by AWS Step Functions.

AWS Step Functions state machine for audio processing: Whisper transcription, speaker identification, and Bedrock summary tasks

Build a serverless audio summarization solution with Amazon Bedrock and Whisper

In this post, we demonstrate how to use the Open AI Whisper foundation model (FM) Whisper Large V3 Turbo, available in Amazon Bedrock Marketplace, which offers access to over 140 models through a dedicated offering, to produce near real-time transcription. These transcriptions are then processed by Amazon Bedrock for summarization and redaction of sensitive information.

Embodied AI Chess with Amazon Bedrock

In this post, we demonstrate Embodied AI Chess with Amazon Bedrock, bringing a new dimension to traditional chess through generative AI capabilities. Our setup features a smart chess board that can detect moves in real time, paired with two robotic arms executing those moves. Each arm is controlled by different FMs—base or custom. This physical implementation allows you to observe and experiment with how different generative AI models approach complex gaming strategies in real-world chess matches.

Orchestrate generative AI workflows with Amazon Bedrock and AWS Step Functions

This post discusses how to use AWS Step Functions to efficiently coordinate multi-step generative AI workflows, such as parallelizing API calls to Amazon Bedrock to quickly gather answers to lists of submitted questions. We also touch on the usage of Retrieval Augmented Generation (RAG) to optimize outputs and provide an extra layer of precision, as well as other possible integrations through Step Functions.

Summarize call transcriptions securely with Amazon Transcribe and Amazon Bedrock Guardrails

Summarize call transcriptions securely with Amazon Transcribe and Amazon Bedrock Guardrails

In this post, we show you how to use Amazon Transcribe to get near real-time transcriptions of calls sent to Amazon Bedrock for summarization and sensitive data redaction. We’ll walk through an architecture that uses AWS Step Functions to orchestrate the process, providing seamless integration and efficient processing

Generative AI-powered American Sign Language avatars

GenASL: Generative AI-powered American Sign Language avatars

In this post, we dive into the architecture and implementation details of GenASL, which uses AWS generative AI capabilities to create human-like ASL avatar videos. GenASL is a solution that translates speech or text into expressive ASL avatar animations, bridging the gap between spoken and written language and sign language.

Automating model customization in Amazon Bedrock with AWS Step Functions workflow

Large language models have become indispensable in generating intelligent and nuanced responses across a wide variety of business use cases. However, enterprises often have unique data and use cases that require customizing large language models beyond their out-of-the-box capabilities. Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) […]