Artificial Intelligence
Category: Amazon SageMaker Unified Studio
Configure fine-grained access to Amazon Bedrock models using Amazon SageMaker Unified Studio
In this post, we demonstrate how to use SageMaker Unified Studio and AWS Identity and Access Management (IAM) to establish a robust permission framework for Amazon Bedrock models. We show how administrators can precisely manage which users and teams have access to specific models within a secure, collaborative environment. We guide you through creating granular permissions to control model access, with code examples for common enterprise governance scenarios.
End-to-End model training and deployment with Amazon SageMaker Unified Studio
In this post, we guide you through the stages of customizing large language models (LLMs) with SageMaker Unified Studio and SageMaker AI, covering the end-to-end process starting from data discovery to fine-tuning FMs with SageMaker AI distributed training, tracking metrics using MLflow, and then deploying models using SageMaker AI inference for real-time inference. We also discuss best practices to choose the right instance size and share some debugging best practices while working with JupyterLab notebooks in SageMaker Unified Studio.
Use Amazon SageMaker Unified Studio to build complex AI workflows using Amazon Bedrock Flows
In this post, we demonstrate how you can use SageMaker Unified Studio to create complex AI workflows using Amazon Bedrock Flows.
Create generative AI agents that interact with your companies’ systems in a few clicks using Amazon Bedrock in Amazon SageMaker Unified Studio
In this post, we demonstrate how to use Amazon Bedrock in SageMaker Unified Studio to build a generative AI application to integrate with an existing endpoint and database.