AWS Database Blog
Category: Amazon Neptune
Explore the new openCypher custom functions and subquery support in Amazon Neptune
In this post, we describe some of the openCypher features that have been released as part of the 1.4.2.0 engine update to Amazon Neptune. Neptune provides developers with the choice of building their graph applications using three open graph query languages: openCypher, Apache TinkerPop Gremlin, and the World Wide Web Consortium’s (W3C) SPARQL 1.1. You can use the guide at the end of this post to try out the new features that are described.
Graph-powered authorization: Relationship based access control for access management
Authorization systems are a critical component of modern applications, yet traditional approaches like role-based access control (RBAC) and attribute-based access control (ABAC) struggle to meet the complex access control requirements of today’s enterprises. In this post, we introduce a relationship-based access control (ReBAC) as an alternative for enterprise scale authorization. We explore how the proposed […]
Zupee implements Amazon Neptune to detect Wallet transaction anomalies in real time
Zupee is a leading skill-based gaming platform offering casual and board games and is one of the fastest growing real money gaming platforms in India. Users can play multiple skill-based games online and win prizes. In this post, we show you how Zupee integrated Amazon Neptune Database to detect anomalies in real time for wallet transactions by creating a system for tracing the complex relationships between users, devices, and wallet transactions metadata.
How Amazon Finance Automation built an operational data store with AWS purpose built databases to power critical finance applications
In this post, we discuss how the Amazon Finance Automation team used AWS purpose built databases, such as Amazon DynamoDB, Amazon OpenSearch Service, and Amazon Neptune together coupled with serverless compute like AWS Lambda to build an Operational Data Store (ODS) to store financial transactional data and support FinOps applications with millisecond latency. This data is the key enabler for FinOps business.
Using generative AI and Amazon Bedrock to generate SPARQL queries to discover protein functional information with UniProtKB and Amazon Neptune
In this post, we demonstrate how to use generative AI and Amazon Bedrock to transform natural language questions into graph queries to run against a knowledge graph. We explore the generation of queries written in the SPARQL query language, a well-known language for querying a graph whose data is represented as Resource Description Framework (RDF).
Create a 360-degree master data management patient view solution using Amazon Neptune and generative AI
In this post, we explore how you can achieve a patient 360-degree view using Amazon Neptune and generative AI, and use it to strengthen your organization’s research and breakthroughs. By consolidating information from multiple sources such as electronic health records (EHRs), lab reports, prescriptions, and medical histories into a single location, healthcare providers can gain a better understanding of a patient’s health.
Introducing the GraphRAG Toolkit
Amazon Neptune recently released the GraphRAG Toolkit, an open source Python library that makes it straightforward to build graph-enhanced Retrieval Augmented Generation (RAG) workflows. In this post, we describe how you can get started with the toolkit. We begin by looking at the benefits of adding a graph to your RAG application. Then we show you how to set up a quick start environment and install the toolkit. Lastly, we discuss some of the design considerations that led to the toolkit’s graph model and its approach to content retrieval.
Use Amazon Neptune Analytics to analyze relationships in your data faster, Part 2: Enhancing fraud detection with Parquet and CSV import and export
In this two-part series, we show how you can import and export using Parquet and CSV to quickly gather insights from your existing graph data. In Part 1, we introduced the import and export functionalities, and walked you through how to quickly get started with them. In this post, we show how you can use the new data mobility improvements in Neptune Analytics to enhance fraud detection.
Use Amazon Neptune Analytics to analyze relationships in your data faster, Part 1: Introducing Parquet and CSV import and export
In this two-part series, we show how you can import and export using Parquet and CSV to quickly gather insights from your existing graph data. Part 1 introduces the import and export functionalities, and walks you through how to quickly get started with them. In Part 2, we show how you can use the new data mobility improvements in Neptune Analytics to enhance fraud detection.
How Orca Security optimized their Amazon Neptune database performance
Orca Security, an AWS Partner, is an independent cybersecurity software provider whose patented agentless-first cloud security platform is trusted by hundreds of enterprises globally. At Orca Security, we use a variety of metrics to assess the significance of security alerts on cloud assets. Our Amazon Neptune database plays a critical role in calculating the exposure of individual assets within a customer’s cloud environment. By building a graph that maps assets and their connectivity between one another and to the broader internet, the Orca Cloud Security Platform can evaluate both how an asset is exposed as well as how an attacker could potentially move laterally within an account. In this post, we explore some of the key strategies we’ve adopted to maximize the performance of our Amazon Neptune database.