AWS Big Data Blog

Category: Amazon Simple Storage Service (S3)

Optimizing vector search using Amazon S3 Vectors and Amazon OpenSearch Service

We now have a public preview of two integrations between Amazon Simple Storage Service (Amazon S3) Vectors and Amazon OpenSearch Service that give you more flexibility in how you store and search vector embeddings. In this post, we walk through this seamless integration, providing you with flexible options for vector search implementation.

Compaction support for Avro and ORC file formats in Apache Iceberg tables in Amazon S3

In this post, we explore how Amazon S3 Tables has expanded its automatic compaction capabilities to include Avro and ORC file formats for Apache Iceberg tables, alongside the previously supported Parquet format. Through performance testing with over 20 billion events, the capability demonstrates significant query performance improvements ranging from 12% to 40% when using compacted tables compared to non-compacted tables across different file formats.

How Stifel built a modern data platform using AWS Glue and an event-driven domain architecture

In this post, we show you how Stifel implemented a modern data platform using AWS services and open data standards, building an event-driven architecture for domain data products while centralizing the metadata to facilitate discovery and sharing of data products.

Stream data from Amazon MSK to Apache Iceberg tables in Amazon S3 and Amazon S3 Tables using Amazon Data Firehose

In this post, we walk through two solutions that demonstrate how to stream data from your Amazon MSK provisioned cluster to Iceberg-based data lakes in Amazon S3 using Amazon Data Firehose.

Reduce time to access your transactional data for analytical processing using the power of Amazon SageMaker Lakehouse and zero-ETL

In this post, we demonstrate how you can bring transactional data from AWS OLTP data stores like Amazon Relational Database Service (Amazon RDS) and Amazon Aurora flowing into Redshift using zero-ETL integrations to SageMaker Lakehouse Federated Catalog (Bring your own Amazon Redshift into SageMaker Lakehouse). With this integration, you can now seamlessly onboard the changed data from OLTP systems to a unified lakehouse and expose the same to analytical applications for consumptions using Apache Iceberg APIs from new SageMaker Unified Studio.

Simplify enterprise data access using the Amazon Redshift integration with Amazon S3 Access Grants

In this post, we show how to grant Amazon S3 permissions to IAM Identity Center users and groups using S3 Access Grants. We also test the integration using an IAM Identity Center federated user to unload data from Amazon Redshift to Amazon S3 and load data from Amazon S3 to Amazon Redshift.

Accelerate your analytics with Amazon S3 Tables and Amazon SageMaker Lakehouse

Amazon SageMaker Lakehouse is a unified, open, and secure data lakehouse that now seamlessly integrates with Amazon S3 Tables, the first cloud object store with built-in Apache Iceberg support. In this post, we guide you how to use various analytics services using the integration of SageMaker Lakehouse with S3 Tables.

Build unified pipelines spanning multiple AWS accounts and Regions with Amazon MWAA

In this blog post, we demonstrate how to use Amazon MWAA for centralized orchestration, while distributing data processing and machine learning tasks across different AWS accounts and Regions for optimal performance and compliance.

Using Amazon S3 Tables with Amazon Redshift to query Apache Iceberg tables

In this post, we demonstrate how to get started with S3 Tables and Amazon Redshift Serverless for querying data in Iceberg tables. We show how to set up S3 Tables, load data, register them in the unified data lake catalog, set up basic access controls in SageMaker Lakehouse through AWS Lake Formation, and query the data using Amazon Redshift.

How Open Universities Australia modernized their data platform and significantly reduced their ETL costs with AWS Cloud Development Kit and AWS Step Functions

At Open Universities Australia (OUA), we empower students to explore a vast array of degrees from renowned Australian universities, all delivered through online learning. In this post, we show you how we used AWS services to replace our existing third-party ETL tool, improving the team’s productivity and producing a significant reduction in our ETL operational costs.