AWS Big Data Blog
Category: Analytics
Process Large DynamoDB Streams Using Multiple Amazon Kinesis Client Library (KCL) Workers
Asmita Barve-Karandikar is an SDE with DynamoDB Introduction Imagine you own a popular mobile health app, with millions of users worldwide, that continuously records new information. It sends over one million updates per second to its master data store and needs the updates to be relayed to various replicas across different regions in real time. […]
Simplify Management of Amazon Redshift Snapshots using AWS Lambda
NOTE: Amazon Redshift now supports creating an automatic snapshot schedule using the snapshot scheduler. For more information, please review this “What’s New” post. ———————————- Ian Meyers is a Solutions Architecture Senior Manager with AWS Amazon Redshift is a fast, fully managed, petabyte-scale data warehouse that makes it simple and cost-effective to analyze all your data […]
How SmartNews Built a Lambda Architecture on AWS to Analyze Customer Behavior and Recommend Content
This is a guest post by Takumi Sakamoto, a software engineer at SmartNews. SmartNews in their own words: “SmartNews is a machine learning-based news discovery app that delivers the very best stories on the Web for more than 18 million users worldwide.” Data processing is one of the key technologies for SmartNews. Every team’s workload […]
Generating Recommendations at Amazon Scale with Apache Spark and Amazon DSSTNE
In this post, I discuss an alternate solution; namely, running separate CPU and GPU clusters, and driving the end-to-end modeling process from Apache Spark.
Use Sqoop to Transfer Data from Amazon EMR to Amazon RDS
In this post, I will show you how to transfer data using Apache Sqoop, which is a tool designed to transfer data between Hadoop and relational databases. Support for Apache Sqoop is available in Amazon EMR releases 4.4.0 and later.
Analyze Realtime Data from Amazon Kinesis Streams Using Zeppelin and Spark Streaming
This post shows you how you can use Spark Streaming to process data coming from Amazon Kinesis streams, build some graphs using Zeppelin, and then store the Zeppelin notebook in Amazon S3.
Apache Tez Now Available with Amazon EMR
Amazon EMR has added Apache Tez version 0.8.3 as a supported application in release 4.7.0. Tez is an extensible framework for building batch and interactive data processing applications on top of Hadoop YARN.
Processing Amazon DynamoDB Streams Using the Amazon Kinesis Client Library
Asmita Barve-Karandikar is an SDE with DynamoDB Customers often want to process streams on an Amazon DynamoDB table with a significant number of partitions or with a high throughput. AWS Lambda and the DynamoDB Streams Kinesis Adapter are two ways to consume DynamoDB streams in a scalable way. While Lambda lets you run your application […]
Use Apache Oozie Workflows to Automate Apache Spark Jobs (and more!) on Amazon EMR
Mike Grimes is an SDE with Amazon EMR As a developer or data scientist, you rarely want to run a single serial job on an Apache Spark cluster. More often, to gain insight from your data you need to process it in multiple, possibly tiered steps, and then move the data into another format and […]
JOIN Amazon Redshift AND Amazon RDS PostgreSQL WITH dblink
Tony Gibbs is a Solutions Architect with AWS (Update: This blog post has been translated into Japanese) When it comes to choosing a SQL-based database in AWS, there are many options. Sometimes it can be difficult to know which one to choose. For example, when would you use Amazon Aurora instead of Amazon RDS PostgreSQL […]





