AWS Big Data Blog

Category: Amazon SageMaker Unified Studio

Navigating architectural choices for a lakehouse using Amazon SageMaker

Over time, several distinct lakehouse approaches have emerged. In this post, we show you how to evaluate and choose the right lakehouse pattern for your needs. A lakehouse architecture isn’t about choosing between a data lake and a data warehouse. Instead, it’s an approach to interoperability where both frameworks coexist and serve different purposes within a unified data architecture. By understanding fundamental storage patterns, implementing effective catalog strategies, and using native storage capabilities, you can build scalable, high-performance data architectures that support both your current analytics needs and future innovation.

Use Amazon SageMaker custom tags for project resource governance and cost tracking

Amazon SageMaker announced a new feature that you can use to add custom tags to resources created through an Amazon SageMaker Unified Studio project. This helps you enforce tagging standards that conform to your organization’s service control policies (SCPs) and helps enable cost tracking reporting practices on resources created across the organization. In this post, we look at use cases for custom tags and how to use the AWS Command Line Interface (AWS CLI) to add tags to project resources.

AWS analytics at re:Invent 2025: Unifying Data, AI, and governance at scale

re:Invent 2025 showcased the bold Amazon Web Services (AWS) vision for the future of analytics, one where data warehouses, data lakes, and AI development converge into a seamless, open, intelligent platform, with Apache Iceberg compatibility at its core. Across over 18 major announcements spanning three weeks, AWS demonstrated how organizations can break down data silos, […]

Unifying governance and metadata across Amazon SageMaker Unified Studio and Atlan

In this post, we show you how to unify governance and metadata across Amazon SageMaker Unified Studio and Atlan through a comprehensive bidirectional integration. You’ll learn how to deploy the necessary AWS infrastructure, configure secure connections, and set up automated synchronization to maintain consistent metadata across both platforms.

How Bayer transforms Pharma R&D with a cloud-based data science ecosystem using Amazon SageMaker

In this post, we discuss how Bayer AG used the next generation of Amazon SageMaker to build a cloud-based Pharma R&D Data Science Ecosystem (DSE) that unified data ingestion, storage, analytics, and AI/ML workflows.

Orchestrating data processing tasks with a serverless visual workflow in Amazon SageMaker Unified Studio

In this post, we show how to use the new visual workflow experience in SageMaker Unified Studio IAM-based domains to orchestrate an end-to-end machine learning workflow. The workflow ingests weather data, applies transformations, and generates predictions—all through a single, intuitive interface, without writing any orchestration code.

Cross-account lakehouse governance with Amazon S3 Tables and SageMaker Catalog

In this post, we walk you through a practical solution for secure, efficient cross-account data sharing and analysis. You’ll learn how to set up cross-account access to S3 Tables using federated catalogs in Amazon SageMaker, perform unified queries across accounts with Amazon Athena in Amazon SageMaker Unified Studio, and implement fine-grained access controls at the column level using AWS Lake Formation.

Enhanced search with match highlights and explanations in Amazon SageMaker

Amazon SageMaker now enhances search results in Amazon SageMaker Unified Studio with additional context that improves transparency and interpretability. The capability introduces inline highlighting for matched terms and an explanation panel that details where and how each match occurred across metadata fields such as name, description, glossary, and schema. In this post, we demonstrate how to use enhanced search in Amazon SageMaker.

Use trusted identity propagation for Apache Spark interactive sessions in Amazon SageMaker Unified Studio

In this post, we provide step-by-step instructions to set up Amazon EMR on EC2, EMR Serverless, and AWS Glue within SageMaker Unified Studio, enabled with trusted identity propagation. We use the setup to illustrate how different IAM Identity Center users can run their Spark sessions, using each compute setup, within the same project in SageMaker Unified Studio. We show how each user will see only tables or part of tables that they’re granted access to in Lake Formation.