AWS Big Data Blog

Category: Amazon Athena

Introducing managed query results for Amazon Athena

We’re thrilled to introduce managed query results, a new Athena feature that automatically stores, secures, and manages the lifecycle of query result data for you at no additional cost. In this post, we demonstrate how to get started with managed query results and, by removing the undifferentiated effort spent on query result management, how Athena helps you get insights from your data in fewer steps than before.

Build a secure serverless streaming pipeline with Amazon MSK Serverless, Amazon EMR Serverless and IAM

The post demonstrates a comprehensive, end-to-end solution for processing data from MSK Serverless using an EMR Serverless Spark Streaming job, secured with IAM authentication. Additionally, it demonstrates how to query the processed data using Amazon Athena, providing a seamless and integrated workflow for data processing and analysis. This solution enables near real-time querying of the latest data processed from MSK Serverless and EMR Serverless using Athena, providing instant insights and analytics.

How BMW Group built a serverless terabyte-scale data transformation architecture with dbt and Amazon Athena

At the BMW Group, our Cloud Efficiency Analytics (CLEA) team has developed a FinOps solution to optimize costs across over 10,000 cloud accounts This post explores our journey, from the initial challenges to our current architecture, and details the steps we took to achieve a highly efficient, serverless data transformation setup.

Amazon SageMaker Lakehouse now supports attribute-based access control

Amazon SageMaker Lakehouse now supports attribute-based access control (ABAC) with AWS Lake Formation, using AWS Identity and Access Management (IAM) principals and session tags to simplify data access, grant creation, and maintenance. In this post, we demonstrate how to get started with SageMaker Lakehouse with ABAC.

Read and write Apache Iceberg tables using AWS Lake Formation hybrid access mode

In this post, we demonstrate how to use Lake Formation for read access while continuing to use AWS Identity and Access Management (IAM) policy-based permissions for write workloads that update the schema and upsert (insert and update combined) data records into the Iceberg tables.

Accelerate your analytics with Amazon S3 Tables and Amazon SageMaker Lakehouse

Amazon SageMaker Lakehouse is a unified, open, and secure data lakehouse that now seamlessly integrates with Amazon S3 Tables, the first cloud object store with built-in Apache Iceberg support. In this post, we guide you how to use various analytics services using the integration of SageMaker Lakehouse with S3 Tables.

Introducing a new unified data connection experience with Amazon SageMaker Lakehouse unified data connectivity

With Amazon SageMaker Lakehouse unified data connectivity, you can confidently connect, explore, and unlock the full value of your data across AWS services and achieve your business objectives with agility. This post demonstrates how SageMaker Lakehouse unified data connectivity helps your data integration workload by streamlining the establishment and management of connections for various data sources.

Building end-to-end data lineage for one-time and complex queries using Amazon Athena, Amazon Redshift, Amazon Neptune and dbt

In this post, we use dbt for data modeling on both Amazon Athena and Amazon Redshift. dbt on Athena supports real-time queries, while dbt on Amazon Redshift handles complex queries, unifying the development language and significantly reducing the technical learning curve. Using a single dbt modeling language not only simplifies the development process but also automatically generates consistent data lineage information. This approach offers robust adaptability, easily accommodating changes in data structures.

Catalog and govern Amazon Athena federated queries with Amazon SageMaker Lakehouse

In this post, we show how to connect to, govern, and run federated queries on data stored in Redshift, DynamoDB (Preview), and Snowflake (Preview). To query our data, we use Athena, which is seamlessly integrated with SageMaker Unified Studio. We use SageMaker Lakehouse to present data to end-users as federated catalogs, a new type of catalog object. Finally, we demonstrate how to use column-level security permissions in AWS Lake Formation to give analysts access to the data they need while restricting access to sensitive information.