AWS Partner Network (APN) Blog
Category: Amazon Machine Learning
Cognitive Document Processing and Data Extraction for the Oil and Gas Industry
The oil and gas industry is highly complex and churns out copious amounts of data from sensors and machines at every stage in their business value chain. This post analyzes the role of machine learning for document extraction in the oil and gas industry for better business operations. Learn about Quantiphi’s document processing solution built on AWS, and how it helped a Canadian oil and gas organization address document management challenges through AI and ML techniques.
How SF Medic Provides Real-Time Clinical Decision Support Using AWS Machine Learning Services
The healthcare industry is experiencing a global shortage of doctors, nurses, and other healthcare professionals. Telemedicine, which provides primary healthcare services to patients through remote connectivity, is one approach for addressing this challenge. SourceFuse developed an easy-to-use and secure telemedicine application called SF Medic that can be adopted by hospitals, clinics, and even single-physician practices.
Optimizing Supply Chains Through Intelligent Revenue and Supply Chain (IRAS) Management
Fragmented supply-chain management systems can impair an enterprise’s ability to make informed, timely decisions. Accenture’s Intelligent Revenue and Supply Chain (IRAS) platform integrates insights generated by machine learning models into an enterprise’s technical and business ecosystems. This post explains how Accenture’s IRAS solution is architected, how it can coexist with other ML forecasting models or statistical packages, and how you can consume its insights in an integrated way.
Training Multiple Machine Learning Models Simultaneously Using Spark and Apache Arrow
Spark is a distributed computing framework that added new features like Pandas UDF by using PyArrow. You can leverage Spark for distributed and advanced machine learning model lifecycle capabilities to build massive-scale products with a bunch of models in production. Learn how Perion Network implemented a model lifecycle capability to distribute the training and testing stages with few lines of PySpark code. This capability improved the performance and accuracy of Perion’s ML models.
Intelligent Call Routing Using Amazon Fraud Detector and Amazon Connect
Amazon Fraud Detector is a fully managed service that makes it easy to identify potentially fraudulent online activities, such as online payment fraud and the creation of fake accounts. Learn how APN Premier Consulting Partner TCS has been integrating Amazon Fraud Detector to detect spam calls and route them efficiently using Amazon Connect. Used together, these AWS services can distinguish your genuine customers from spam or fraudulent callers.
Boosting the Assembly and Deployment of Artificial Intelligence Solutions with KNIME Visual Data Science Tools
With rapid advancements in machine learning techniques over the past decade, intelligent decision-making and prediction systems are poised to transform productivity and lead to significant economic gains. KNIME provides visual data science tools to help data science teams rapidly build and deploy data-driven solutions that integrate with AWS decision support tools and services. Learn about the barriers to adoption of AI and the ways in which the KNIME tools remove those barriers.
Building a Data Processing and Training Pipeline with Amazon SageMaker
Next Caller uses machine learning on AWS to drive data analysis and the processing pipeline. Amazon SageMaker helps Next Caller understand call pathways through the telephone network, rendering analysis in approximately 125 milliseconds with the VeriCall analysis engine. VeriCall verifies that a phone call is coming from the physical device that owns the phone number, and flags spoofed calls and other suspicious interactions in real-time.
Accelerating Machine Learning with Qubole and Amazon SageMaker Integration
Data scientists creating enterprise machine learning models to process large volumes of data spend a significant portion of their time managing the infrastructure required to process the data, rather than exploring the data and building ML models. You can reduce this overhead by running Qubole data processing tools and Amazon SageMaker. An open data lake platform, Qubole automates the administration and management of your resources on AWS.
How Slalom and WordStream Used MLOps to Unify Machine Learning and DevOps on AWS
Deploying AI solutions with ML models into production introduces new challenges. Machine Learning Operations (MLOps) has been evolving rapidly as the industry learns to marry new ML technologies and practices with incumbent software delivery systems and processes. WordStream is a SaaS company using ML capabilities to help small and mid-sized businesses get the most out of their online advertising. Learn how Slalom developed ML architecture to help WordStream productionize their machine learning efforts.
How Slalom Uses AWS DeepRacer to Upskill its Workforce in Reinforcement Learning
AWS DeepRacer allows developers of all skill levels to get started with reinforcement learning, which is an advanced machine learning technique that learns very complex behaviors without requiring any labeled training data, and can make short-term decisions while optimizing for a longer term goal. Learn how Slalom created AWS DeepRacer experiences for its own workforce. The cars and tracks now regularly appear in at Slalom locations across the world as valuable internal learning events.