I use ClickHouse as a merchant side portal, especially when we started exploring how to use the data, which was coming from multiple sources such as logs, mainframe, Teradata, and many file systems that come to the data lake. The real-time challenge was joining the data and providing more analytical queries for our merchants, who work throughout the year to improve GMB, sales, and ensure the right quantity of items is ordered at the right time. That's the challenge for the merchants, and we aim for fast analytical queries on larger databases, which is why we selected ClickHouse as our columnar OLAP database supporting real-time analytics with its own SQL interface.
We have installed both local Docker versions, which are quite scalable, and usually connect with BI tools such as Grafana, Superset, and Tableau while utilizing materialized views, DDLs partitions, and many other connectors with Python, such as ClickHouse connectors and drivers. It's exciting to see how ClickHouse has evolved, and we are evaluating ClickHouse Cloud while also having the on-premises version.
We are already a customer of ClickHouse, with Sam's Club utilizing it on the merchant side while also exploring ClickHouse for consumers, primarily for user analytics, metrics, and streaming data analysis in ad tech. Additionally, we use custom analysis and metrics for fraud detection in payments and ad campaign metrics, with various teams utilizing it for ad campaign management and user behavior analytics, particularly on e-commerce sites focusing on customer behavior. It's extensively used due to its low latency, fast aggregations, and excellent OLAP columnar storage, featuring quick joins and real-time data visibility, making ClickHouse very appealing to us.