
Overview
cfxCloud Log Intelligence service deploys an observability pipeline that does 1) Log Correlation and Reduction 2) Log Enrichment and PII masking 3) Log archival and replay 4) Log cfxEdge solution. This service provides 50% TCO improvements, 60% MTTR improvements, and 40% productivity improvements for Splunk and SIEM customers. This is a contract offering
Highlights
- Log Intelligence preprocessor for Splunk
Details
Unlock automation with AI agent solutions

Features and programs
Financing for AWS Marketplace purchases
Pricing
Free trial
Dimension | Description | Cost/month | Overage cost |
---|---|---|---|
Up to 1 TB/Day | Up to 1 TB/Day Log Data Ingestion | $7,604.00 | - |
Up to 2 TB/Day | Up to 2 TB/Day Log Data Ingestion | $10,950.00 | - |
Up to 5 TB/Day | Up to 5 TB/Day Log Data Ingestion | $21,292.00 |
Vendor refund policy
enabled
How can we make this page better?
Legal
Vendor terms and conditions
Content disclaimer
Delivery details
Software as a Service (SaaS)
SaaS delivers cloud-based software applications directly to customers over the internet. You can access these applications through a subscription model. You will pay recurring monthly usage fees through your AWS bill, while AWS handles deployment and infrastructure management, ensuring scalability, reliability, and seamless integration with other AWS services.
Resources
Vendor resources
Support
AWS infrastructure support
AWS Support is a one-on-one, fast-response support channel that is staffed 24x7x365 with experienced and technical support engineers. The service helps customers of all sizes and technical abilities to successfully utilize the products and features provided by Amazon Web Services.
Similar products

Customer reviews
Meilleure plateforme pour AIOps axé sur les données
Nous a aidés à analyser et à conserver les données de journaux/événements de manière économique.
Dans une plateforme, vous disposez de tous les outils nécessaires pour créer des pipelines de données et des services complets.
Cela a été très intéressant et utile. Le fait que dans un environnement, vous ayez tous les outils nécessaires pour construire des pipelines de données et des flux de travail complets. Faire tout cela avec Python peut être plus complexe.