Listing Thumbnail

    Autocode Python Code Recommender

     Info
    Sold by: Mphasis 
    Deployed on AWS
    A Deep Learning based solution which provides syntactically and semantically correct python code recommendations for an input text query.

    Overview

    Autocode Text To Python Code Recommender takes a code related user text query as input and returns 3 optimal code recommendations from Github that will be syntactically and semantically correct. Considering the ever increasing number of programming languages and the frameworks that are built around them, it is very difficult to be technically fluent in all of them. Another challenge is the amount of code development time and effort spent on looking up efficient solutions to solve a problem. This solution helps in addressing these practical problems faced by the developer community.

    Highlights

    • This solution helps accelerate the application development cycle by providing developers with targeted code recommendations.
    • The system uses a similarity-based distance measure to find the most correct and efficient code sample for the user query. The query should be coherent and focused on a single topic.
    • Autocode is a Deep Learning based automated software development platform for rapid prototyping that can help software developers, testers and support teams. Need customized Deep Learning solutions? Get in touch!

    Details

    Delivery method

    Latest version

    Deployed on AWS

    Unlock automation with AI agent solutions

    Fast-track AI initiatives with agents, tools, and solutions from AWS Partners.
    AI Agents

    Features and programs

    Financing for AWS Marketplace purchases

    AWS Marketplace now accepts line of credit payments through the PNC Vendor Finance program. This program is available to select AWS customers in the US, excluding NV, NC, ND, TN, & VT.
    Financing for AWS Marketplace purchases

    Pricing

    Autocode Python Code Recommender

     Info
    Pricing is based on actual usage, with charges varying according to how much you consume. Subscriptions have no end date and may be canceled any time.
    Additional AWS infrastructure costs may apply. Use the AWS Pricing Calculator  to estimate your infrastructure costs.

    Usage costs (70)

     Info
    Dimension
    Description
    Cost/host/hour
    ml.c4.2xlarge Inference (Batch)
    Recommended
    Model inference on the ml.c4.2xlarge instance type, batch mode
    $20.00
    ml.c4.2xlarge Inference (Real-Time)
    Recommended
    Model inference on the ml.c4.2xlarge instance type, real-time mode
    $10.00
    ml.p2.xlarge Inference (Batch)
    Model inference on the ml.p2.xlarge instance type, batch mode
    $20.00
    ml.m4.4xlarge Inference (Batch)
    Model inference on the ml.m4.4xlarge instance type, batch mode
    $20.00
    ml.m5.12xlarge Inference (Batch)
    Model inference on the ml.m5.12xlarge instance type, batch mode
    $20.00
    ml.m4.16xlarge Inference (Batch)
    Model inference on the ml.m4.16xlarge instance type, batch mode
    $20.00
    ml.p2.16xlarge Inference (Batch)
    Model inference on the ml.p2.16xlarge instance type, batch mode
    $20.00
    ml.p3.16xlarge Inference (Batch)
    Model inference on the ml.p3.16xlarge instance type, batch mode
    $20.00
    ml.c4.4xlarge Inference (Batch)
    Model inference on the ml.c4.4xlarge instance type, batch mode
    $20.00
    ml.c5.9xlarge Inference (Batch)
    Model inference on the ml.c5.9xlarge instance type, batch mode
    $20.00

    Vendor refund policy

    Currently we do not support refunds, but you can cancel your subscription to the service at any time.

    How can we make this page better?

    We'd like to hear your feedback and ideas on how to improve this page.
    We'd like to hear your feedback and ideas on how to improve this page.

    Legal

    Vendor terms and conditions

    Upon subscribing to this product, you must acknowledge and agree to the terms and conditions outlined in the vendor's End User License Agreement (EULA) .

    Content disclaimer

    Vendors are responsible for their product descriptions and other product content. AWS does not warrant that vendors' product descriptions or other product content are accurate, complete, reliable, current, or error-free.

    Usage information

     Info

    Delivery details

    Amazon SageMaker model

    An Amazon SageMaker model package is a pre-trained machine learning model ready to use without additional training. Use the model package to create a model on Amazon SageMaker for real-time inference or batch processing. Amazon SageMaker is a fully managed platform for building, training, and deploying machine learning models at scale.

    Deploy the model on Amazon SageMaker AI using the following options:
    Deploy the model as an API endpoint for your applications. When you send data to the endpoint, SageMaker processes it and returns results by API response. The endpoint runs continuously until you delete it. You're billed for software and SageMaker infrastructure costs while the endpoint runs. AWS Marketplace models don't support Amazon SageMaker Asynchronous Inference. For more information, see Deploy models for real-time inference  .
    Deploy the model to process batches of data stored in Amazon Simple Storage Service (Amazon S3). SageMaker runs the job, processes your data, and returns results to Amazon S3. When complete, SageMaker stops the model. You're billed for software and SageMaker infrastructure costs only during the batch job. Duration depends on your model, instance type, and dataset size. AWS Marketplace models don't support Amazon SageMaker Asynchronous Inference. For more information, see Batch transform for inference with Amazon SageMaker AI  .
    Version release notes

    Bug Fixes and Performance Improvement

    Additional details

    Inputs

    Summary

    Input

    Supported content types: text/plain As such there is no character limit on the query. The query should be coherent and focused on a single topic. The system may have problem in capturing context across multiple sentences so it is advised to stick to a single sentence query

    Sample Input queries :

    1. Create confusion matrix ?
    2. How to Input a csv file in Python ?
    3. Convert a date string into yyyymmdd format

    Output

    Content type: text/csv Sample Output:

    ResultFunction NameURL
    Result 1Create<https://github.com/cloudfoundry/>..

    Invoking endpoint

    AWS CLI Command

    If you are using real time inferencing, please create the endpoint first and then use the following command to invoke it:

    !aws sagemaker-runtime invoke-endpoint --endpoint-name $model_name --body fileb://$input.json--content-type 'text/plain' --region us-east-2 output.csv

    Substitute the following parameters:

    • "endpoint-name" - name of the inference endpoint where the model is deployed
    • input.json - input json with query
    • application/json - MIME type of the given input
    • out.json - filename where the inference results are written to.

    Resources

    Link to Instructions Notebook: https://tinyurl.com/qnvw8nv  Link to Sample Input: https://tinyurl.com/uc5ez2t  Link to Sample Output: https://tinyurl.com/t6fm8q4 

    Input MIME type
    application/json, text/plain, text/csv
    See Input Summary
    See Input Summary

    Support

    Vendor support

    For any assistance reach out to us at:

    AWS infrastructure support

    AWS Support is a one-on-one, fast-response support channel that is staffed 24x7x365 with experienced and technical support engineers. The service helps customers of all sizes and technical abilities to successfully utilize the products and features provided by Amazon Web Services.

    Similar products

    Customer reviews

    Ratings and reviews

     Info
    0 ratings
    5 star
    4 star
    3 star
    2 star
    1 star
    0%
    0%
    0%
    0%
    0%
    0 AWS reviews
    No customer reviews yet
    Be the first to review this product . We've partnered with PeerSpot to gather customer feedback. You can share your experience by writing or recording a review, or scheduling a call with a PeerSpot analyst.