
Overview
MongoDB Atlas for Government has achieved FedRAMP Moderate Authorization and is a separate environment of MongoDB Atlas, dedicated to meeting the demanding security and privacy needs of the US Government.
It is a fully managed MongoDB service engineered and run by the same team that builds the database and MongoDB Atlas. It incorporates operational best practices we've learned from optimizing thousands of deployments across startups and the Fortune 100. Build on MongoDB Atlas for Government with confidence, knowing that you no longer need to worry about database management, setup, and configuration, software patching, monitoring, backups, or operating a reliable, distributed database cluster.
MongoDB Atlas for Government is available in AWS GovCloud and AWS US FedRAMP Moderate regions.MongoDB Atlas for Government for AWS Marketplace includes: 24,000 MongoDB Atlas for Government Credits valid for 12 months for USD 24,000. Credits are consumed based on the chosen cluster configuration, backup settings, and network transfer costs
MongoDB Atlas for Government Pro Support with 2 hr response time SLA. The MongoDB Atlas for Government Pro plan provides access to proactive, consultative support. The same team that builds the database helps you throughout your entire application lifecycle. You can ask MongoDB experts unlimited questions, 24 x 365, globally.
Highlights
- Highly available: Clusters are geo-distributed fault-tolerant and self-healing. Deploy across multiple regions (e.g.: spanning GovCloud east and west regions) for even better guarantees and local reads.
- Protect your data: Strong security defaults with authentication, network isolation, encryption, and role-based access controls keep your data protected.
- Build semantic search and AI-powered applications: Integrate the operational database and vector search in a single, unified, and fully managed developer data platform with a MongoDB native interface that leverages large language models (LLMs) through popular frameworks
Details
Unlock automation with AI agent solutions

Features and programs
Security credentials achieved
(3)



Financing for AWS Marketplace purchases
Pricing
Custom pricing options
How can we make this page better?
Legal
Content disclaimer
Delivery details
Software as a Service (SaaS)
SaaS delivers cloud-based software applications directly to customers over the internet. You can access these applications through a subscription model. You will pay recurring monthly usage fees through your AWS bill, while AWS handles deployment and infrastructure management, ensuring scalability, reliability, and seamless integration with other AWS services.
Resources
Vendor resources
Support
Vendor support
AWS infrastructure support
AWS Support is a one-on-one, fast-response support channel that is staffed 24x7x365 with experienced and technical support engineers. The service helps customers of all sizes and technical abilities to successfully utilize the products and features provided by Amazon Web Services.

FedRAMP
GDPR
HIPAA
ISO/IEC 27001
PCI DSS
SOC 2 Type 2
Standard contract
Customer reviews
Open-source tool improves network monitoring and reporting efficiency
What is our primary use case?
MongoDB does well in being able to access our network devices and keep logs and reporting—that's about it.
I would recommend MongoDBÂ as part of a template if anyone is considering free and open-source templating services such as LibreNMSÂ , but as a standalone, I couldn't advise.
What is most valuable?
MongoDB has definitely helped us improve our network monitoring and reporting dashboard, so I would say it has impacted our operations positively overall.
What needs improvement?
I'm not sure about the documentation or the knowledge bases available for MongoDB because I don't interact with it at that level, but I would say it's minimal and could be improved.
I am not experienced with MongoDB enough to know any pain points or areas they could improve.
Nothing else comes to mind at this time that could be improved.
For how long have I used the solution?
We deployed MongoDB about five years ago and it has been in operation since then.
What was my experience with deployment of the solution?
I was not a part of the initial setup or deployment of MongoDB.
One person was involved with the setup team, and it took just a few days to deploy it.
What do I think about the scalability of the solution?
Overall, on a scale of one to ten, I would rate MongoDB an eight; it's mostly because we're still running a monolithic environment on old hardware, so there are some limitations with read-write access.
Which solution did I use previously and why did I switch?
At this time, I'm only looking into Cisco or Linux or other solutions out of curiosity about possibly switching to it, but currently all that we use are LibreNMSÂ and Splynx.
How was the initial setup?
From what I know, I would say the initial setup of MongoDB was pretty straightforward.
On LibreNMS, they have a template for setting up the environment that includes all the services, so MongoDB is just part of that template, meaning they weren't really too hands-on with setting up MongoDB itself.
What about the implementation team?
One person was involved with the setup team, and their job title was Network Operations Engineer.
Which other solutions did I evaluate?
I'm familiar with open-source databases such as MongoDB, and I don't think it's Grafana , but it's similar to Grafana , though I'm trying to think of what it's called.
I'm not entirely sure about the main differences between MongoDB and other open-source databases that I've used.
We haven't really delved too much into looking at comparisons for databases.
What other advice do I have?
MongoDB is not currently supporting our AI-driven projects nor do we use it along with AI at all.
I don't know how MongoDB's document-oriented model has benefited our management processes; that's beyond my expertise.
I don't have experience with QRadar or Auvik or similar products.
I'm familiar with some Linux tools, just things such as smokeping, which we use implemented in our LibreNMS environment.
I'm only an operator, so I don't actually spend a lot of time developing MongoDB, thus I'm not sure what the best features are.
I would rate MongoDB an eight out of ten.
Which deployment model are you using for this solution?
Offers reliable engine for legacy needs but requires enhanced cost management and AI features
What is our primary use case?
I am not a partner of MongoDB; I am just a customer.
I do not use MongoDB in AI projects; only CosmoDB is used for AI projects, as MongoDB is an old pattern for us, and the new workload in AI is for a new pattern, which is CosmoDB for AI apps.
I would recommend MongoDB because it is a good pattern and a good product for legacy; for us, MongoDB is for legacy databases and legacy apps, and in this scope, it is a good pattern and a stable database engine; however, for new deployments and new applications, CosmoDB is a better engine.
What is most valuable?
My experience as a partner with Microsoft is very good because we have been a partner for three or four years, and it has been a very good experience.
MongoDB may have advantages over Cosmos DB perhaps in metrics because you can make some dashboards with database metrics, and there are many tools in MongoDB for dashboarding that are perhaps better than CosmoDB.
The dashboards in MongoDB have more functionalities; for example, you can create a dashboard with MongoDB database data, and it is simple to create, such as some sales dashboards, while I do not see this functionality to rapidly create such dashboards in CosmoDB.
What needs improvement?
While MongoDB is a good product, it is also an expensive product for support, and its scalability is acceptable, but the big problem with MongoDB is the cost.
For security in MongoDB, we work with encrypted databases by default, but we have not contracted the security options in our contract because it is too expensive, so we only implement encrypted databases without the security pack, which is very expensive for us; in security, we are at the first steps, just using encrypted databases.
I think additional features needed in MongoDB include perhaps vector databases, as I think they are not supported right now.
For how long have I used the solution?
I have been working with MongoDB for five years.
What do I think about the scalability of the solution?
The scalability in MongoDB is limited because we only work with ReplicaSet with two servers, and in comparison, the scalability in CosmoDB is much better than the MongoDB ReplicaSet models; although you can set the auto-provisioning of a node in ReplicaSet, it is very expensive, and we have to work with manual scalability in MongoDB.
The performance of MongoDB is good, especially in a ReplicaSet model, but if you want to pass on to another model, for example, Sharding models, it is very complicated; in ReplicaSet, it is acceptable, but if your workload needs more performance, and you must pass to a Sharding model, it is complicated in MongoDB, whereas in CosmoDB, it is simple.
What was our ROI?
We have seen a little ROI, and we want to target CosmoDB for this return on investment because it is the better model for this feature; however, with MongoDB, it is difficult to calculate the return on investment, as it is too expensive for our use.
What's my experience with pricing, setup cost, and licensing?
We pay approximately 2,000 euros per month for MongoDB.
What other advice do I have?
This solution receives a rating of 7 out of 10.
Facile Ă utiliser pour les collections
Transforms data flow with adaptable schema and smooth public cloud deployment
What is our primary use case?
What is most valuable?
What needs improvement?
For how long have I used the solution?
What was my experience with deployment of the solution?
What do I think about the stability of the solution?
What do I think about the scalability of the solution?
How are customer service and support?
How would you rate customer service and support?
Neutral
Which solution did I use previously and why did I switch?
How was the initial setup?
What's my experience with pricing, setup cost, and licensing?
What other advice do I have?
Which deployment model are you using for this solution?
If public cloud, private cloud, or hybrid cloud, which cloud provider do you use?
Trop cher, mauvaise performance et l'un des pires supports que j'ai jamais eu à gérer.
Comparé à nos autres factures d'infrastructure, Mongo était nettement plus élevé pour la quantité de calcul et de stockage que nous utilisions (3K $ par mois). C'est un service géré, donc on s'attend à payer une prime. D'accord, mais alors je m'attends à une grande fonctionnalité, performance et support.
Le principal problème a commencé avec Mongo lorsque nous avons eu besoin de supprimer certaines données parce qu'ils lient les niveaux de CPU et de mémoire à la taille de stockage, donc nous payions trop. Notre application fonctionnerait bien sur un cluster dédié M10 (le plus petit niveau), mais elle avait automatiquement évolué vers un M50 à cause du stockage. C'est déjà un peu décevant parce qu'ils forcent les clients à payer pour plus de calcul et de mémoire qu'ils n'en ont besoin.
Nous avons donc commencé à supprimer certaines données, mais nous avons ensuite rencontré des problèmes. Le processus de suppression des données était vraiment lent et ralentissait également tout notre cluster, causant des retards et des problèmes de performance pour nos utilisateurs finaux. Mais attendez, cela n'a aucun sens parce que nous payons pour plus de CPU et de RAM que nous n'en avons besoin, alors pourquoi aurions-nous ce problème ?
Il nous a fallu trois mois pour supprimer 500 Go de données. Entre-temps, notre facture est restée la même parce que vous ne pouvez pas récupérer l'espace sans compacter la base de données. D'accord, très bien. Nous avons donc exécuté compact(), mais nous n'avons libéré qu'environ 100 Go sur les clusters secondaires.
Le support nous a donné un script à exécuter qui peut voir combien de stockage peut être libéré.
Finalement, nous avons dû activer un plan de support supplémentaire coûteux nous coûtant 500 USD par mois pour obtenir le support pour exécuter une commande de resynchronisation. Cela aurait dû prendre 10 minutes à leur personnel de support, mais au lieu de cela, ils nous ont fait tourner en rond avec le ticket, prenant trois semaines pour résoudre le problème.
Un an plus tard, nous avons eu besoin de supprimer encore plus de données. Nous avons passé cinq mois supplémentaires à supprimer 800 Go de données. Ensuite, nous avons exécuté compact() et libéré 300 Go. Où sont nos autres 500 Go ? Nous avons contacté des personnes chez Mongo, qui ne pouvaient vraiment pas faire grand-chose d'autre que de suggérer que nous obtenions un financement pour couvrir le support de 500 $ pour un mois. Oui, nous avons obtenu le crédit de 500 $, mais quand j'ai voulu réactiver le support, cela allait nous facturer pour trois mois pour un mois parce que Mongo vous facture rétroactivement pour trois mois lorsque vous réactivez. Wow, nous avons commencé dans une mauvaise situation, maintenant je suis au-delà de la frustration ; c'est du vol en plein jour.
À ce jour, je me bats toujours pour récupérer du stockage, mais à ce stade, je vais recommander à notre PDG que notre équipe de développement mette des efforts pour s'éloigner complètement de Mongo.
Je dois également mentionner que Mongo nous a recommandé d'utiliser leurs fonctionnalités d'archivage en ligne, mais lorsque nous avons fait les calculs, c'était encore assez cher, et nous devrions faire un travail significatif pour faire fonctionner notre application entre les clusters réguliers et l'archive en ligne. Donc, il était beaucoup plus logique de simplement mettre les données dans AWS S3, puis de les supprimer dans Mongo.
Si je peux résumer mon expérience avec Mongo, et je reconnais que la mienne est probablement assez différente de la plupart, la voici :
Trop cher pour la performance que vous obtenez
Modèle de facturation sournois où ils lient CPU et mémoire au stockage
Support terrible et coûteux
Frais supplémentaires sournois lors de la réactivation du support
Mauvaises solutions d'escalade du support - ils ne pouvaient pas simplement activer un 'support' gratuit
Mauvaise performance de la base de données
Opérations de suppression lentes
Verrouillage de l'écosystème
Mises à niveau forcées - pas de versions LTS
Permettez-moi de le résumer ainsi : si votre commande compact() ne libère pas l'espace disponible sur votre cluster, alors fournissez au client un support gratuit pour le faire.
Je déteste traiter avec Mongo. Rien n'est simple, tout est cher, et la performance est médiocre.
Si vous envisagez d'utiliser Mongo, trouvez autre chose. Même si vous devez prendre un peu plus de temps pour apprendre AWS Dynamo, S3 ou Aurora, vous devriez le faire ; vous économiserez du temps et de l'argent à long terme.
Mongo, vous méritez cette critique négative. Je vous ai donné de nombreuses occasions de résoudre les problèmes et j'ai escaladé les problèmes, mais vous vous en fichez.
Nous voulions nous éloigner de Mongo avant ; maintenant je ne peux pas m'en débarrasser assez vite.